論文の概要: Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms
- arxiv url: http://arxiv.org/abs/2204.03896v2
- Date: Mon, 3 Jun 2024 14:09:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 07:04:28.737736
- Title: Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms
- Title(参考訳): 自動後編集のための半教師付き学習の促進:不正用語によるマスク埋込みによるデータ合成
- Authors: Wonkee Lee, Seong-Hwan Heo, Jong-Hyeok Lee,
- Abstract要約: 高品質な合成データを作成するためのデータ合成手法に着目する。
本稿では,結果の合成データが実際のデータにある翻訳誤りを模倣するデータ合成手法を提案する。
実験結果から, 提案手法により生成した合成データを用いることで, 既存の合成データよりもAPEの性能が有意に向上することがわかった。
- 参考スコア(独自算出の注目度): 5.366354612549173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning that leverages synthetic data for training has been widely adopted for developing automatic post-editing (APE) models due to the lack of training data. With this aim, we focus on data-synthesis methods to create high-quality synthetic data. Given that APE takes as input a machine-translation result that might include errors, we present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data. We introduce a noising-based data-synthesis method by adapting the masked language model approach, generating a noisy text from a clean text by infilling masked tokens with erroneous tokens. Moreover, we propose selective corpus interleaving that combines two separate synthetic datasets by taking only the advantageous samples to enhance the quality of the synthetic data further. Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
- Abstract(参考訳): 学習に合成データを利用する半教師付き学習は、トレーニングデータの欠如により自動後編集(APE)モデルの開発に広く採用されている。
本研究の目的は,高品質な合成データを作成するためのデータ合成手法に焦点を当てることである。
APEが誤りを含むかもしれない機械翻訳結果の入力となることを考慮し、結果の合成データが実際のデータにある翻訳誤りを模倣するデータ合成法を提案する。
我々は,マスク付き言語モデルに適応して,マスク付きトークンに誤ったトークンを埋め込むことで,クリーンテキストからノイズの多いテキストを生成し,雑音に基づくデータ合成手法を提案する。
さらに,2つの異なる合成データセットを組み合わせた選択的コーパスインターリーブを提案する。
実験結果から, 提案手法により生成した合成データを用いることで, 既存の合成データよりもAPEの性能が有意に向上することがわかった。
関連論文リスト
- Improving Grammatical Error Correction via Contextual Data Augmentation [49.746484518527716]
本研究では,文脈拡張に基づく合成データ構築手法を提案する。
具体的には、ルールベースの置換とモデルベースの生成を組み合わせる。
また,合成データにおけるノイズラベルの効果を軽減するために,レザベリングに基づくデータクリーニング手法を提案する。
論文 参考訳(メタデータ) (2024-06-25T10:49:56Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
合成データと1k以下のトレーニングステップのみを用いて,高品質なテキスト埋め込みを実現するための,新しい簡易な手法を提案する。
我々は、93言語にまたがる数十万のテキスト埋め込みタスクのための多様な合成データを生成するために、プロプライエタリなLLMを活用している。
実験により,ラベル付きデータを使わずに,高度に競争力のあるテキスト埋め込みベンチマークにおいて高い性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-31T02:13:18Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
a) Howsoエンジンを導入し、(b)ランダムプロジェクションに基づく合成データ生成フレームワークを提案する。
Howsoエンジンが生成する合成データは、プライバシーと正確性に優れており、その結果、総合的なスコアが最高の結果となる。
提案するランダム・プロジェクション・ベース・フレームワークは,高い精度で合成データを生成することができ,スケーラビリティが最速である。
論文 参考訳(メタデータ) (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
※データ合成*はラベル付きデータの少ない小さなモデルをトレーニングするための有望な方法です。
本稿では,この分散ギャップを縮めるデータ合成フレームワークであるStep* (**S3**) による合成ステップを提案する。
提案手法は,合成データセットと実データとのギャップを小さくすることで,小型モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Generation and Simulation of Synthetic Datasets with Copulas [0.0]
本稿では,数値変数あるいは分類変数からなる合成データセットを生成するための完全かつ信頼性の高いアルゴリズムを提案する。
我々の方法論を2つのデータセットに適用すると、SMOTEやオートエンコーダといった他の手法よりも優れたパフォーマンスが得られる。
論文 参考訳(メタデータ) (2022-03-30T13:22:44Z) - Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition [18.924716098922683]
合成データによる機械学習は、合成データと実際のデータ分布のギャップのため、簡単ではない。
本稿では,分散ギャップに起因する問題を緩和するために,トレーニング中の2つの新しい手法を提案する。
これらの手法は,合成データを用いた音声認識モデルの訓練を著しく改善することを示す。
論文 参考訳(メタデータ) (2021-10-21T21:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。