Adverse Media Mining for KYC and ESG Compliance
- URL: http://arxiv.org/abs/2110.11542v1
- Date: Fri, 22 Oct 2021 01:04:16 GMT
- Title: Adverse Media Mining for KYC and ESG Compliance
- Authors: Rupinder Paul Khandpur, Albert Aristotle Nanda, Mathew Davis, Chen Li,
Daulet Nurmanbetov, Sankalp Gaur and Ashit Talukder
- Abstract summary: Adverse media or negative news screening is crucial for the identification of such non-financial risks.
We present an automated system to conduct both real-time and batch search of adverse media for users' queries.
Our scalable, machine-learning driven approach to high-precision, adverse news filtering is based on four perspectives.
- Score: 2.381399746981591
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, institutions operating in the global market economy face
growing risks stemming from non-financial risk factors such as cyber,
third-party, and reputational outweighing traditional risks of credit and
liquidity. Adverse media or negative news screening is crucial for the
identification of such non-financial risks. Typical tools for screening are not
real-time, involve manual searches, require labor-intensive monitoring of
information sources. Moreover, they are costly processes to maintain up-to-date
with complex regulatory requirements and the institution's evolving risk
appetite.
In this extended abstract, we present an automated system to conduct both
real-time and batch search of adverse media for users' queries (person or
organization entities) using news and other open-source, unstructured sources
of information. Our scalable, machine-learning driven approach to
high-precision, adverse news filtering is based on four perspectives -
relevance to risk domains, search query (entity) relevance, adverse sentiment
analysis, and risk encoding. With the help of model evaluations and case
studies, we summarize the performance of our deployed application.
Related papers
- Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
We introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants.
The central mechanism enabling this marketplace is the agents' dual capabilities: they have the capacity to assess the quality of privileged information but also come equipped with the ability to forget.
To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information.
arXiv Detail & Related papers (2024-03-21T14:48:37Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Evaluating Robustness of Generative Search Engine on Adversarial Factual Questions [89.35345649303451]
Generative search engines have the potential to transform how people seek information online.
But generated responses from existing large language models (LLMs)-backed generative search engines may not always be accurate.
Retrieval-augmented generation exacerbates safety concerns, since adversaries may successfully evade the entire system.
arXiv Detail & Related papers (2024-02-25T11:22:19Z) - Mind the Gap: Securely modeling cyber risk based on security deviations
from a peer group [2.7910505923792646]
This paper proposes a new framework for cyber posture against peers and estimating cyber risk within specific economic sectors.
We introduce a new top-line variable called the Defense Gap Index representing the weighted security gap between an organization and its peers.
We apply this approach in a specific sector using data collected from 25 large firms.
arXiv Detail & Related papers (2024-02-06T17:22:45Z) - RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data
from Industry Reports [8.45831177335402]
This article introduces the Real Cyber Value at Risk (RCVaR), an economical approach for estimating cybersecurity costs.
RCVaR identifies the most significant cyber risk factors from various sources and combines their quantitative results to estimate specific cyberattacks costs for companies.
arXiv Detail & Related papers (2023-07-20T17:52:47Z) - The Ethical Risks of Analyzing Crisis Events on Social Media with
Machine Learning [0.7817685358710509]
Social media platforms provide a continuous stream of real-time news regarding crisis events on a global scale.
Several machine learning methods utilize the crowd-sourced data for the automated detection of crises and the characterization of their precursors and aftermaths.
This work identifies and critically examines ethical risk factors of social media analyses of crisis events focusing on machine learning methods.
arXiv Detail & Related papers (2022-10-07T06:54:54Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Heterogeneous Information Network based Default Analysis on Banking
Micro and Small Enterprise Users [18.32345474014549]
We consider a graph of banking data, and propose a novel HIDAM model for the purpose.
To enhance feature representation of MSEs, we extract interactive information through meta-paths and fully exploit path information.
Experimental results verify that HIDAM outperforms state-of-the-art competitors on real-world banking data.
arXiv Detail & Related papers (2022-04-24T11:26:12Z) - Fighting Money Laundering with Statistics and Machine Learning [95.42181254494287]
There is little scientific literature on statistical and machine learning methods for anti-money laundering.
We propose a unifying terminology with two central elements: (i) client risk profiling and (ii) suspicious behavior flagging.
arXiv Detail & Related papers (2022-01-11T21:31:18Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.