Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning
- URL: http://arxiv.org/abs/2002.03735v1
- Date: Mon, 20 Jan 2020 05:24:58 GMT
- Title: Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning
- Authors: Sayantan Chatterjee, Faheem H. Zunjani, Souvik Sen and Gora C. Nandi
- Abstract summary: We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
- Score: 0.12599533416395764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We envision that in the near future, humanoid robots would share home space
and assist us in our daily and routine activities through object manipulations.
One of the fundamental technologies that need to be developed for robots is to
enable them to detect objects and recognize them for effective manipulations
and take real-time decisions involving those objects. In this paper, we
describe a novel architecture that enables multiple low-compute NAO robots to
perform real-time detection, recognition and localization of objects in its
camera view and take programmable actions based on the detected objects. The
proposed algorithm for object detection and localization is an empirical
modification of YOLOv3, based on indoor experiments in multiple scenarios, with
a smaller weight size and lesser computational requirements. Quantization of
the weights and re-adjusting filter sizes and layer arrangements for
convolutions improved the inference time for low-resolution images from the
robot s camera feed. YOLOv3 was chosen after a comparative study of bounding
box algorithms was performed with an objective to choose one that strikes the
perfect balance among information retention, low inference time and high
accuracy for real-time object detection and localization. The architecture also
comprises of an effective end-to-end pipeline to feed the real-time frames from
the camera feed to the neural net and use its results for guiding the robot
with customizable actions corresponding to the detected class labels.
Related papers
- Accelerating Object Detection with YOLOv4 for Real-Time Applications [0.276240219662896]
Convolutional Neural Network (CNN) have emerged as a powerful tool for recognizing image content and in computer vision approach for most problems.
This paper introduces the brief introduction of deep learning and object detection framework like Convolutional Neural Network(CNN)
arXiv Detail & Related papers (2024-10-17T17:44:57Z) - Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Tiny Robotics Dataset and Benchmark for Continual Object Detection [6.4036245876073234]
This work introduces a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms.
Our contributions include: (i) Tiny Robotics Object Detection (TiROD), a comprehensive dataset collected using a small mobile robot, designed to test the adaptability of object detectors across various domains and classes; (ii) an evaluation of state-of-the-art real-time object detectors combined with different continual learning strategies on this dataset; and (iii) we publish the data and the code to replicate the results to foster continuous advancements in this field.
arXiv Detail & Related papers (2024-09-24T16:21:27Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Object Recognition in Different Lighting Conditions at Various Angles by
Deep Learning Method [0.0]
Existing computer vision and object detection methods rely on neural networks and deep learning.
This article aims to classify the name of the various object based on the position of an object's detected box.
We find that this model's accuracy through recognition is mainly influenced by the proportion of objects and the number of samples.
arXiv Detail & Related papers (2022-10-18T06:23:26Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, is an end-to-end method for the problem of object rearrangement for unknown objects.
We show that our method applies to cluttered scenes, and in the real world, while training only on synthetic data.
arXiv Detail & Related papers (2022-02-01T20:03:56Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Object Detection and Pose Estimation from RGB and Depth Data for
Real-time, Adaptive Robotic Grasping [0.0]
We propose a system that performs real-time object detection and pose estimation, for the purpose of dynamic robot grasping.
The proposed approach allows the robot to detect the object identity and its actual pose, and then adapt a canonical grasp in order to be used with the new pose.
For training, the system defines a canonical grasp by capturing the relative pose of an object with respect to the gripper attached to the robot's wrist.
During testing, once a new pose is detected, a canonical grasp for the object is identified and then dynamically adapted by adjusting the robot arm's joint angles.
arXiv Detail & Related papers (2021-01-18T22:22:47Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.