Climbing the Diagonal Clifford Hierarchy
- URL: http://arxiv.org/abs/2110.11923v2
- Date: Wed, 27 Oct 2021 16:30:04 GMT
- Title: Climbing the Diagonal Clifford Hierarchy
- Authors: Jingzhen Hu, Qingzhong Liang, Robert Calderbank
- Abstract summary: We introduce a method of synthesizing codes that realize a target logical diagonal gate at some level $l$ in the Clifford hierarchy.
The method combines three basic operations: concatenation, removal of $Z$-stabilizers, and addition of $X$-stabilizers.
For the coherent noise model, we describe how to switch between computation and storage of intermediate results in a decoherence-free subspace.
- Score: 0.6445605125467572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magic state distillation and the Shor factoring algorithm make essential use
of logical diagonal gates. We introduce a method of synthesizing CSS codes that
realize a target logical diagonal gate at some level $l$ in the Clifford
hierarchy. The method combines three basic operations: concatenation, removal
of $Z$-stabilizers, and addition of $X$-stabilizers. It explicitly tracks the
logical gate induced by a diagonal physical gate that preserves a CSS code. The
first step is concatenation, where the input is a CSS code and a physical
diagonal gate at level $l$ inducing a logical diagonal gate at the same level.
The output is a new code for which a physical diagonal gate at level $l+1$
induces the original logical gate. The next step is judicious removal of
$Z$-stabilizers to increase the level of the induced logical operator. We
identify three ways of climbing the logical Clifford hierarchy from level $l$
to level $l+1$, each built on a recursive relation on the Pauli coefficients of
the induced logical operators. Removal of $Z$-stabilizers may reduce distance,
and the purpose of the third basic operation, addition of $X$-stabilizers, is
to compensate for such losses. For the coherent noise model, we describe how to
switch between computation and storage of intermediate results in a
decoherence-free subspace by simply applying Pauli $X$ matrices. The approach
to logical gate synthesis taken in prior work focuses on the code states, and
results in sufficient conditions for a CSS code to be fixed by a transversal
$Z$-rotation. In contrast, we derive necessary and sufficient conditions by
analyzing the action of a transversal diagonal gate on the stabilizer group
that determines the code. The power of our approach is demonstrated by two
proofs of concept: the $[[2^{l+1}-2,2,2]]$ triorthogonal code family, and the
$[[2^m,\binom{m}{r},2^{\min\{r,m-r\}}]]$ quantum Reed-Muller code family.
Related papers
- Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes [0.9208007322096533]
We construct an explicit infinite family of quantum LDPC codes supporting a $Cr-1Z$ gate with length $N$, dimension $Kgeq N1-epsilon$, distance $Dgeq N1/r/namepoly(log N)$, and stabilizer weight $wleqoperatorname(log N)$.
arXiv Detail & Related papers (2024-10-18T17:52:59Z) - Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries [1.3194391758295114]
We study fault-tolerant quantum computing for families of homological quantum low-density parity-check codes defined on 3-manifolds with constant or almost-constant encoding rate.
We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds.
arXiv Detail & Related papers (2023-10-25T20:33:59Z) - Layered State Discovery for Incremental Autonomous Exploration [106.37656068276901]
Layered Autonomous Exploration (LAE) is a novel algorithm for AX that attains a sample complexity of $tildemathcalO(LSrightarrow_LAln12(Srightarrow_LAln12(Srightarrow_LAln12(Srightarrow_LAln12(Srightar row_LAln12(Srightarrow_LAln12
arXiv Detail & Related papers (2023-02-07T22:58:12Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning [54.806166861456035]
We study the episodic reinforcement learning (RL) problem modeled by finite-horizon Markov Decision Processes (MDPs) with constraint on the number of batches.
We design a computational efficient algorithm to achieve near-optimal regret of $tildeO(sqrtSAH3Kln (1/delta))$tildeO(cdot) hides logarithmic terms of $(S,A,H,K)$ in $K$ episodes.
Our technical contribution are two-fold: 1) a near-optimal design scheme to explore
arXiv Detail & Related papers (2022-10-15T09:22:22Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Computationally Efficient Horizon-Free Reinforcement Learning for Linear
Mixture MDPs [111.75736569611159]
We propose the first computationally efficient horizon-free algorithm for linear mixture MDPs.
Our algorithm adapts a weighted least square estimator for the unknown transitional dynamic.
This also improves upon the best-known algorithms in this setting when $sigma_k2$'s are known.
arXiv Detail & Related papers (2022-05-23T17:59:18Z) - Divisible Codes for Quantum Computation [0.6445605125467572]
Divisible codes are defined by the property that codeword weights share a common divisor greater than one.
This paper explores how they can be used to protect quantum information as it is transformed by logical gates.
arXiv Detail & Related papers (2022-04-27T20:18:51Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Designing the Quantum Channels Induced by Diagonal Gates [0.5735035463793007]
Diagonal gates play an important role in implementing a universal set of quantum operations.
This paper describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction.
arXiv Detail & Related papers (2021-09-28T04:39:15Z) - Classical Coding Problem from Transversal $T$ Gates [10.478611957969145]
We show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical $T$ via physical $T$.
We also use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes.
arXiv Detail & Related papers (2020-01-14T16:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.