Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes
- URL: http://arxiv.org/abs/2410.14662v1
- Date: Fri, 18 Oct 2024 17:52:59 GMT
- Title: Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes
- Authors: Louis Golowich, Ting-Chun Lin,
- Abstract summary: We construct an explicit infinite family of quantum LDPC codes supporting a $Cr-1Z$ gate with length $N$, dimension $Kgeq N1-epsilon$, distance $Dgeq N1/r/namepoly(log N)$, and stabilizer weight $wleqoperatorname(log N)$.
- Score: 0.9208007322096533
- License:
- Abstract: For every integer $r\geq 2$ and every $\epsilon>0$, we construct an explicit infinite family of quantum LDPC codes supporting a transversal $C^{r-1}Z$ gate with length $N$, dimension $K\geq N^{1-\epsilon}$, distance $D\geq N^{1/r}/\operatorname{poly}(\log N)$, and stabilizer weight $w\leq\operatorname{poly}(\log N)$. The previous state of the art construction (in most parameter regimes) was the $r$-dimensional color code, which has only constant dimension $K=O(1)$, and otherwise has the same parameters up to polylogarithmic factors. Our construction provides the first known codes with low-weight stabilizers that are capable of magic state distillation with arbitrarily small yield parameter $\gamma=\log(N/K)/\log(D)>0$. A classical analogue of transversal $C^{r-1}Z$ gates is given by the multiplication property, which requires component-wise products of classical codewords to belong to another similar code. As a byproduct of our techniques, we also obtain a new construction of classical locally testable codes with such a multiplication property. We construct our codes as products of chain complexes associated to classical LDPC codes, which in turn we obtain by imposing local Reed-Solomon codes on a specific spectral expander that we construct. We prove that our codes support the desired transversal $C^{r-1}Z$ gates by using the multiplication property to combine local circuits based on the topological structure.
Related papers
- Unifying error-correcting code/Narain CFT correspondences via lattices over integers of cyclotomic fields [0.0]
We identify Narain conformal field theories (CFTs) that correspond to code lattices for quantum error-correcting codes (QECC) over integers of cyclotomic fields $Q(zeta_p)$ $(zeta_p=efrac2pi ip)$ for general prime $pgeq 3$.
arXiv Detail & Related papers (2024-10-16T12:08:04Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Entanglement-assisted Quantum Error Correcting Code Saturating The Classical Singleton Bound [44.154181086513574]
We introduce a construction for entanglement-assisted quantum error-correcting codes (EAQECCs) that saturates the classical Singleton bound with less shared entanglement than any known method for code rates below $ frackn = frac13 $.
We demonstrate that any classical $[n,k,d]_q$ code can be transformed into an EAQECC with parameters $[n,k,d;2k]]_q$ using $2k$ pre-shared maximally entangled pairs.
arXiv Detail & Related papers (2024-10-05T11:56:15Z) - Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates [23.22566380210149]
We construct quantum codes that support $CCZ$ gates over qudits of arbitrary prime power dimension $q$.
The only previously known construction with such linear dimension and distance required a growing alphabet size $q$.
arXiv Detail & Related papers (2024-08-17T16:54:51Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Divisible Codes for Quantum Computation [0.6445605125467572]
Divisible codes are defined by the property that codeword weights share a common divisor greater than one.
This paper explores how they can be used to protect quantum information as it is transformed by logical gates.
arXiv Detail & Related papers (2022-04-27T20:18:51Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Climbing the Diagonal Clifford Hierarchy [0.6445605125467572]
We introduce a method of synthesizing codes that realize a target logical diagonal gate at some level $l$ in the Clifford hierarchy.
The method combines three basic operations: concatenation, removal of $Z$-stabilizers, and addition of $X$-stabilizers.
For the coherent noise model, we describe how to switch between computation and storage of intermediate results in a decoherence-free subspace.
arXiv Detail & Related papers (2021-10-22T17:08:18Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Quantum LDPC Codes with Almost Linear Minimum Distance [0.0]
We give a construction of quantum LDPC codes of dimension $Theta(log N)$ and distance $Theta(N/log N)$ as the code length $Ntoinfty$.
We show that for any fixed $R 1$ there exists an quasi-cyclically good family of classical LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $Omega(N/log N)$ as the code length $Ntoinfty$.
arXiv Detail & Related papers (2020-12-07T21:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.