論文の概要: Semi-Supervised Semantic Segmentation of Vessel Images using Leaking
Perturbations
- arxiv url: http://arxiv.org/abs/2110.11998v1
- Date: Fri, 22 Oct 2021 18:25:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 17:15:55.536103
- Title: Semi-Supervised Semantic Segmentation of Vessel Images using Leaking
Perturbations
- Title(参考訳): 漏洩摂動を用いた容器画像の半教師付き意味セグメンテーション
- Authors: Jinyong Hou, Xuejie Ding, Jeremiah D. Deng
- Abstract要約: Leaking GANは、網膜血管セグメンテーションのためのGANベースの半教師付きアーキテクチャである。
私たちのキーとなるアイデアは、ジェネレータから情報を漏らすことで識別器を汚染することです。
これにより、より穏健な世代がGANのトレーニングに役立ちます。
- 参考スコア(独自算出の注目度): 1.5791732557395552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation based on deep learning methods can attain appealing
accuracy provided large amounts of annotated samples. However, it remains a
challenging task when only limited labelled data are available, which is
especially common in medical imaging. In this paper, we propose to use Leaking
GAN, a GAN-based semi-supervised architecture for retina vessel semantic
segmentation. Our key idea is to pollute the discriminator by leaking
information from the generator. This leads to more moderate generations that
benefit the training of GAN. As a result, the unlabelled examples can be better
utilized to boost the learning of the discriminator, which eventually leads to
stronger classification performance. In addition, to overcome the variations in
medical images, the mean-teacher mechanism is utilized as an auxiliary
regularization of the discriminator. Further, we modify the focal loss to fit
it as the consistency objective for mean-teacher regularizer. Extensive
experiments demonstrate that the Leaking GAN framework achieves competitive
performance compared to the state-of-the-art methods when evaluated on
benchmark datasets including DRIVE, STARE and CHASE\_DB1, using as few as 8
labelled images in the semi-supervised setting. It also outperforms existing
algorithms on cross-domain segmentation tasks.
- Abstract(参考訳): 深層学習法に基づく意味セグメンテーションは、大量の注釈付きサンプルから魅力的な精度を得ることができる。
しかし、限られたラベル付きデータしか利用できない場合、特に医用画像では、これは難しい課題である。
本稿では,網膜血管セマンティックセグメンテーションのためのGANに基づく半教師付きアーキテクチャであるLeaking GANを提案する。
私たちの重要なアイデアは、ジェネレータから情報を漏らして判別器を汚染することです。
これにより、より穏健な世代がGANのトレーニングに役立ちます。
その結果, 判別器の学習を促進するために, 非競合例をより有効に利用でき, 結果として分類性能が向上する。
また、医用画像のバリエーションを克服するために、平均教師機構を判別器の補助正規化として利用する。
さらに、平均教師正規化器の整合性目的として焦点損失を変更する。
大規模な実験により、Leaking GANフレームワークは、DRIVE、STARE、CHASE\_DB1などのベンチマークデータセットで、半教師付き設定で最大8つのラベル付きイメージを使用して評価した場合、最先端の手法と比較して、競争力を発揮することが示された。
また、クロスドメインセグメンテーションタスクで既存のアルゴリズムを上回る。
関連論文リスト
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
我々は,メートル法学習の概念をセグメンテーションタスクに拡張する。
本稿では,高密度画素レベルの特徴量を得るための単純な畳み込みプロジェクションヘッドを提案する。
下流タスクに対して,2ストリーム正規化トレーニングを含む双方向正規化機構を考案した。
論文 参考訳(メタデータ) (2022-10-26T23:11:02Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Brain Stroke Lesion Segmentation Using Consistent Perception Generative
Adversarial Network [22.444373004248217]
半教師型脳卒中病変分類において, CPGAN(Consistent Perception Generative Adversarial Network)を提案する。
類似接続モジュール (SCM) は、マルチスケール機能の情報をキャプチャするように設計されている。
識別者が有意義な特徴表現を学習するように促すために、補助ネットワークを構築する。
論文 参考訳(メタデータ) (2020-08-30T07:42:47Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。