論文の概要: Generative Adversarial Networks for Non-Raytraced Global Illumination on
Older GPU Hardware
- arxiv url: http://arxiv.org/abs/2110.12039v1
- Date: Fri, 22 Oct 2021 19:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 17:15:31.241908
- Title: Generative Adversarial Networks for Non-Raytraced Global Illumination on
Older GPU Hardware
- Title(参考訳): 古いGPUハードウェアにおける非レイトグローバル照明のための生成逆ネットワーク
- Authors: Jared Harris-Dewey, Richard Klein
- Abstract要約: 我々は,Global IlluminationにGAN(Generative Adrial Networks)を用いることで,アバータライズ画像よりも高品質なレンダリング画像が得られることを示した。
- 参考スコア(独自算出の注目度): 0.30458514384586394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give an overview of the different rendering methods and we demonstrate
that the use of a Generative Adversarial Networks (GAN) for Global Illumination
(GI) gives a superior quality rendered image to that of a rasterisations image.
We utilise the Pix2Pix architecture and specify the hyper-parameters and
methodology used to mimic ray-traced images from a set of input features. We
also demonstrate that the GANs quality is comparable to the quality of the
ray-traced images, but is able to produce the image, at a fraction of the time.
- Abstract(参考訳): 本稿では,異なるレンダリング手法の概要を述べるとともに,GAN(Generative Adversarial Networks)をグローバルイルミネーション(Global Illumination, GI)に適用することにより,ラスタライズ画像よりも優れた画質のレンダリング画像が得られることを示す。
我々はpix2pixアーキテクチャを利用し、入力特徴のセットから光線追跡画像を模倣するために使用されるハイパーパラメータと方法論を指定する。
また,gans品質は光線追跡画像の品質に匹敵するものの,短時間で画像を生成することが可能であることを実証した。
関連論文リスト
- Image Deblurring using GAN [0.0]
本研究は,GAN(Generative Adversarial Network)の画像処理への応用に焦点を当てた。
プロジェクトはGANモデルのインフローを定義し、GoPROデータセットでトレーニングする。
ネットワークは画像のシャープなピクセルを取得でき、平均29.3ピーク信号対雑音比(PSNR)と0.72構造類似度評価(SSIM)を実現している。
論文 参考訳(メタデータ) (2023-12-15T02:43:30Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRFは、スケール情報をエンコードする円錐フラストラムとしてマルチスケール表現を提案する。
我々は,リアルタイムなアンチエイリアスレンダリングのためのマルチスケールな明示的表現であるmip voxel grids (Mip-VoG)を提案する。
私たちのアプローチは、マルチスケールのトレーニングとリアルタイムのアンチエイリアスレンダリングを同時に提供する最初の方法です。
論文 参考訳(メタデータ) (2023-04-20T04:05:22Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Pose-Guided High-Resolution Appearance Transfer via Progressive Training [65.92031716146865]
前例のない画像解像度で、所定の参照外観をターゲットポーズに転送するためのポーズ誘導型外観伝達ネットワークを提案する。
我々のネットワークは、局所的な知覚喪失や局所的な識別など、密集した局所記述子を用いて詳細を精査する。
我々のモデルは高品質な画像を生成し、人間の衣服の移動などの有用な応用にさらに活用することができる。
論文 参考訳(メタデータ) (2020-08-27T03:18:44Z) - Detection, Attribution and Localization of GAN Generated Images [24.430919035100317]
本稿では,GAN生成画像の検出,属性化,ローカライズを行う新しい手法を提案する。
深層学習ネットワークはこれらの特徴に基づいてトレーニングされ、これらのGAN生成/操作された画像を検出し、属性付けし、ローカライズする。
5つのGANデータセットに対するアプローチを大規模に評価した結果,GAN生成画像の検出には有望な結果が得られた。
論文 参考訳(メタデータ) (2020-07-20T20:49:34Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
論文 参考訳(メタデータ) (2020-07-20T18:04:14Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
古典的な例に基づく画像超解法を再考し、知覚的画像超解法のための新しい生成モデルを考案する。
本稿では,変分オートエンコーダを用いた共同画像デノベーションと超解像モデルを提案する。
判別器の助けを借りて、超分解能サブネットワークのオーバーヘッドを加味して、分解された画像をフォトリアリスティックな視覚的品質で超解凍する。
論文 参考訳(メタデータ) (2020-04-27T13:49:36Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。