論文の概要: Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding
- arxiv url: http://arxiv.org/abs/2110.12059v2
- Date: Tue, 26 Oct 2021 16:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 11:43:57.296105
- Title: Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding
- Title(参考訳): チャネル獲得とハイブリッドプリコーディングのための2段階エンドツーエンド学習
- Authors: Qiyu Hu, Yunlong Cai, Kai Kang, Guanding Yu, Jakob Hoydis, Yonina C.
Eldar
- Abstract要約: 本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
- 参考スコア(独自算出の注目度): 94.40747235081466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an end-to-end deep learning-based joint transceiver
design algorithm for millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) systems, which consists of deep neural network
(DNN)-aided pilot training, channel feedback, and hybrid analog-digital (HAD)
precoding. Specifically, we develop a DNN architecture that maps the received
pilots into feedback bits at the receiver, and then further maps the feedback
bits into the hybrid precoder at the transmitter. To reduce the signaling
overhead and channel state information (CSI) mismatch caused by the
transmission delay, a two-timescale DNN composed of a long-term DNN and a
short-term DNN is developed. The analog precoders are designed by the long-term
DNN based on the CSI statistics and updated once in a frame consisting of a
number of time slots. In contrast, the digital precoders are optimized by the
short-term DNN at each time slot based on the estimated low-dimensional
equivalent CSI matrices. A two-timescale training method is also developed for
the proposed DNN with a binary layer. We then analyze the generalization
ability and signaling overhead for the proposed DNN based algorithm. Simulation
results show that our proposed technique significantly outperforms conventional
schemes in terms of bit-error rate performance with reduced signaling overhead
and shorter pilot sequences.
- Abstract(参考訳): 本稿では,deep neural network (dnn) 支援パイロットトレーニング,チャネルフィードバック,ハイブリッドアナログデジタル(had)プリコーディングからなるミリ波多入力多重出力(mimo)システムのための,エンドツーエンドのディープラーニングに基づく統合トランシーバ設計アルゴリズムを提案する。
具体的には、受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発する。
送信遅延に起因する信号処理オーバーヘッドとチャネル状態情報(CSI)ミスマッチを低減するため、長期DNNと短期DNNからなる2時間DNNを開発する。
アナログプリコーダは、CSI統計に基づいて長期DNNによって設計され、複数のタイムスロットからなるフレームで一度更新される。
一方、ディジタルプリコーダは、推定された低次元等価csi行列に基づいて、各タイムスロットにおける短期dnnにより最適化される。
また,二層構造を持つDNNに対して2段階の訓練手法を開発した。
次に,提案したDNNアルゴリズムの一般化能力とシグナリングオーバーヘッドを解析する。
シミュレーションの結果,提案手法は,信号のオーバーヘッドを低減し,パイロットシーケンスの短いビット誤り率性能において,従来の手法よりも大幅に優れていた。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
この研究は、DNN層の最適なデータフローを人間の努力なしに数秒で自動的に見つけるために、Dataflow Code Propagation (DCP)と呼ばれる効率的なデータ中心のアプローチを提案する。
DCPは、様々な最適化目標を最小化するために、望ましい勾配方向に向けてデータフローコードを効率的に更新する神経予測器を学習する。
例えば、追加のトレーニングデータを使用しないDCPは、数千のサンプルを使用して完全な検索を行うGAMAメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-09T05:16:44Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
本稿では、従来のランダムなニューロンやシナプスのドロップアウトを、通常のオンラインの行ベースもしくはタイルベースのドロップアウトパターンに置き換える近似ランダムドロップアウトを提案する。
次に,SGDに基づく探索アルゴリズムを開発し,行ベースあるいはタイルベースのドロップアウトパターンの分布を生成し,潜在的な精度損失を補う。
また,入力特徴図をその感度に基づいて動的にドロップアウトし,前向きおよび後向きのトレーニングアクセラレーションを実現するための感度対応ドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:32:03Z) - TCTN: A 3D-Temporal Convolutional Transformer Network for Spatiotemporal
Predictive Learning [1.952097552284465]
本稿では3次元時間畳み込み変換器 (TCTN) というアルゴリズムを提案する。
提案アルゴリズムは,Transformerの並列機構により,RNNベースの手法に比べて,実装や訓練が容易である。
論文 参考訳(メタデータ) (2021-12-02T10:05:01Z) - Secure Precoding in MIMO-NOMA: A Deep Learning Approach [11.44224857047629]
ディープニューラルネットワーク(DNN)を用いた2ユーザマルチインプット多重出力非直交多重アクセスチャネル上でのセキュア伝送のための新しいシグナリング設計を提案する。
提案したDNNは,各ユーザの信号を重畳する前に線形にプリコードし,実行時間を大幅に短縮してほぼ最適性能を実現する。
論文 参考訳(メタデータ) (2021-10-14T02:15:29Z) - Estimating Traffic Speeds using Probe Data: A Deep Neural Network
Approach [1.5469452301122177]
本稿では,sparseデータに基づく高速道路の時空トラヒック速度を再現する,専用ディープニューラルネットワークアーキテクチャを提案する。
2ヶ月の間にドイツ高速道路A9で収集された大規模な浮動小数点データ(FCD)を利用する。
以上の結果から,DNNは学習パターンを適用でき,静止渋滞だけでなく移動パターンを高精度に再構築できることがわかった。
論文 参考訳(メタデータ) (2021-04-19T23:32:12Z) - DCT-SNN: Using DCT to Distribute Spatial Information over Time for
Learning Low-Latency Spiking Neural Networks [7.876001630578417]
Spiking Neural Networks(SNN)は、従来のディープラーニングフレームワークに代わる有望な選択肢を提供する。
SNNは高い推論遅延に悩まされており、デプロイメントの大きなボトルネックとなっている。
本稿では、離散コサイン変換(DCT)を用いて、推論に必要な時間ステップ数を削減できるスケーラブルな時間ベースの符号化方式を提案する。
論文 参考訳(メタデータ) (2020-10-05T05:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。