論文の概要: DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
- arxiv url: http://arxiv.org/abs/2507.02824v2
- Date: Fri, 04 Jul 2025 03:10:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 11:35:12.727202
- Title: DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
- Title(参考訳): RIS支援ミリ波MIMOシステムにおける実位相シフトを用いたDNNプリコーディング
- Authors: Po-Heng Chou, Ching-Wen Chen, Wan-Jen Huang, Walid Saad, Yu Tsao, Ronald Y. Chang,
- Abstract要約: 本稿では、直接通信路を妨害したミリ波マルチインプット多重出力(MIMO)システムのスループットを最大化する。
リコンフィギュアブルインテリジェントサーフェス(RIS)は、視線(LoS)とマルチパス効果に関連するmmWave特性を考慮して伝送性を高めるために使用される。
ディープニューラルネットワーク(DNN)は、より高速なコードワード選択を容易にするために開発された。
- 参考スコア(独自算出の注目度): 56.04579258267126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
- Abstract(参考訳): 本稿では,ミリ波マルチインプット多重出力(MIMO)システムのスループットを最大化するためのプリコーディング設計について述べる。
特に、リコンフィギュアブル・インテリジェント・サーフェス(RIS)は、視線(LoS)およびマルチパス効果に関連するmmWave特性を考慮してMIMO伝送を強化するために使用される。
連続位相シフトにおける最適なコードワードに対する伝統的な徹底探索(ES)は、計算集約的で時間を要する。
計算複雑性を低減するために、置換離散フーリエ変換(DFT)ベクトルは、実用的なRISシステムや理想的なRISシステムに振幅応答を取り入れて、コードブックの設計を見つけるために用いられる。
しかし、ESで離散位相シフトが適用されたとしても、計算量が大きくなり、時間がかかります。
代わりに、訓練されたディープニューラルネットワーク(DNN)が開発され、コードワードの選択が高速になる。
シミュレーションの結果,DNNは,エンドユーザーとRIS間の距離が試験位相にばらつきがある場合であっても,スペクトルの準最適効率を保っていることがわかった。
これらの結果は、RIS支援システムの進歩におけるDNNの可能性を強調している。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the
Response of Complex Dynamical Systems to Length-Variant Multiple Input
Functions [6.75867828529733]
マルチインプットディープニューラル演算子(MIONet)は、異なるバナッハ空間における複数の入力関数を可能にするためにDeepONetを拡張した。
MIONetは、出力位置の制約なしにデータセットグリッド間隔をトレーニングする柔軟性を提供する。
この作業はMIONetを再設計し、Long Short Term Memory(LSTM)を統合して、時間依存のデータからニューラル演算子を学ぶ。
論文 参考訳(メタデータ) (2023-11-28T04:58:17Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
RIS支援マルチユーザマルチインプットシングルアウトプットダウンリンク通信システムについて検討する。
我々は、アクティブビームフォーミングとパッシブビームフォーミングを同時に設計するディープ量子化ニューラルネットワーク(DQNN)を開発した。
提案した2つのDQNNアルゴリズムは、離散位相シフトと不完全なCSIが同時に考慮される場合に拡張する。
論文 参考訳(メタデータ) (2021-11-12T03:53:20Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD)は、大きな逆線形問題に対する反復検出アルゴリズムである。
我々は、SotAと比較して、CMDが有望なパフォーマンス複雑性のトレードオフを特徴付けることを示す。
特に,CMDのソフト出力がデコーダに信頼性を持つことを示す。
論文 参考訳(メタデータ) (2021-02-25T09:54:25Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
再構成可能なインテリジェントサーフェス(RIS)は、将来の6世代(6G)無線通信システムにおいて重要な技術の一つとして推測されている。
本稿では, 基地局におけるビームフォーミング行列とRISにおける位相シフト行列の接合設計について, 深部強化学習(DRL)の最近の進歩を活用して検討する。
提案アルゴリズムは環境から学習し、その振る舞いを徐々に改善するだけでなく、2つの最先端ベンチマークと比較して同等の性能が得られる。
論文 参考訳(メタデータ) (2020-02-24T04:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。