Scalable knowledge base completion with superposition memories
- URL: http://arxiv.org/abs/2110.12341v1
- Date: Sun, 24 Oct 2021 03:18:04 GMT
- Title: Scalable knowledge base completion with superposition memories
- Authors: Matthias Lalisse, Eric Rosen, Paul Smolensky
- Abstract summary: We present Harmonic Memory Networks (HMem), a neural architecture for knowledge base completion.
HMem models entities as weighted sums of pairwise bindings between an entity's neighbors and corresponding relations.
We demonstrate this with two new datasets: WNGen and FBGen.
- Score: 7.754062965937491
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Harmonic Memory Networks (HMem), a neural architecture for
knowledge base completion that models entities as weighted sums of pairwise
bindings between an entity's neighbors and corresponding relations. Since
entities are modeled as aggregated neighborhoods, representations of unseen
entities can be generated on the fly. We demonstrate this with two new
datasets: WNGen and FBGen. Experiments show that the model is SOTA on
benchmarks, and flexible enough to evolve without retraining as the knowledge
graph grows.
Related papers
- Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties [5.651919225343915]
Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs into numerical representations.
This paper addresses the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings.
We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.
arXiv Detail & Related papers (2024-10-16T08:54:52Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Is There More Pattern in Knowledge Graph? Exploring Proximity Pattern
for Knowledge Graph Embedding [13.17623081024394]
We name such semantic phenomenon in knowledge graph as proximity pattern.
With the original knowledge graph, we design a Chained couPle-GNN architecture to deeply merge the two patterns.
Being evaluated on FB15k-237 and WN18RR datasets, CP-GNN achieves state-of-the-art results for Knowledge Graph Completion task.
arXiv Detail & Related papers (2021-10-02T03:50:42Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings [19.386604643035145]
We propose a simple embedding model to learn quaternion embeddings for entities and relations in knowledge graphs.
Our model aims to enhance correlations between head and tail entities given a relation within the Quaternion space with Hamilton product.
arXiv Detail & Related papers (2020-09-26T04:44:25Z) - Streaming Graph Neural Networks via Continual Learning [31.810308087441445]
Graph neural networks (GNNs) have achieved strong performance in various applications.
In this paper, we propose a streaming GNN model based on continual learning.
We show that our model can efficiently update model parameters and achieve comparable performance to model retraining.
arXiv Detail & Related papers (2020-09-23T06:52:30Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Bipartite Flat-Graph Network for Nested Named Entity Recognition [94.91507634620133]
Bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER)
We propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER)
arXiv Detail & Related papers (2020-05-01T15:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.