Bipartite Flat-Graph Network for Nested Named Entity Recognition
- URL: http://arxiv.org/abs/2005.00436v1
- Date: Fri, 1 May 2020 15:14:22 GMT
- Title: Bipartite Flat-Graph Network for Nested Named Entity Recognition
- Authors: Ying Luo and Hai Zhao
- Abstract summary: Bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER)
We propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER)
- Score: 94.91507634620133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for
nested named entity recognition (NER), which contains two subgraph modules: a
flat NER module for outermost entities and a graph module for all the entities
located in inner layers. Bidirectional LSTM (BiLSTM) and graph convolutional
network (GCN) are adopted to jointly learn flat entities and their inner
dependencies. Different from previous models, which only consider the
unidirectional delivery of information from innermost layers to outer ones (or
outside-to-inside), our model effectively captures the bidirectional
interaction between them. We first use the entities recognized by the flat NER
module to construct an entity graph, which is fed to the next graph module. The
richer representation learned from graph module carries the dependencies of
inner entities and can be exploited to improve outermost entity predictions.
Experimental results on three standard nested NER datasets demonstrate that our
BiFlaG outperforms previous state-of-the-art models.
Related papers
- Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning [32.62763647036567]
Few-shot named entity recognition can identify new types of named entities based on a few labeled examples.
We propose the Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning (MsFNER)
MsFNER splits the general NER into two stages: entity-span detection and entity classification.
arXiv Detail & Related papers (2024-04-10T12:31:09Z) - Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks [58.43972540643903]
We propose HyperGraph neural network for ERE ($hgnn$), which is built upon the PL-marker (a state-of-the-art marker-based pipleline model)
To alleviate error propagation,we use a high-recall pruner mechanism to transfer the burden of entity identification and labeling from the NER module to the joint module of our model.
Experiments on three widely used benchmarks for ERE task show significant improvements over the previous state-of-the-art PL-marker.
arXiv Detail & Related papers (2023-10-26T08:36:39Z) - Few-Shot Nested Named Entity Recognition [4.8693196802491405]
This paper is the first one dedicated to studying the few-shot nested NER task.
We propose a Biaffine-based Contrastive Learning (BCL) framework to learn contextual dependency to distinguish nested entities.
The BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
arXiv Detail & Related papers (2022-12-02T03:42:23Z) - Two-view Graph Neural Networks for Knowledge Graph Completion [13.934907240846197]
We introduce a novel GNN-based knowledge graph embedding model, named WGE, to capture entity-focused graph structure and relation-focused graph structure.
WGE obtains state-of-the-art performances on three new and challenging benchmark datasets CoDEx for knowledge graph completion.
arXiv Detail & Related papers (2021-12-16T22:36:17Z) - Scalable knowledge base completion with superposition memories [7.754062965937491]
We present Harmonic Memory Networks (HMem), a neural architecture for knowledge base completion.
HMem models entities as weighted sums of pairwise bindings between an entity's neighbors and corresponding relations.
We demonstrate this with two new datasets: WNGen and FBGen.
arXiv Detail & Related papers (2021-10-24T03:18:04Z) - Neural Production Systems [90.75211413357577]
Visual environments are structured, consisting of distinct objects or entities.
To partition images into entities, deep-learning researchers have proposed structural inductive biases.
We take inspiration from cognitive science and resurrect a classic approach, which consists of a set of rule templates.
This architecture achieves a flexible, dynamic flow of control and serves to factorize entity-specific and rule-based information.
arXiv Detail & Related papers (2021-03-02T18:53:20Z) - CaEGCN: Cross-Attention Fusion based Enhanced Graph Convolutional
Network for Clustering [51.62959830761789]
We propose a cross-attention based deep clustering framework, named Cross-Attention Fusion based Enhanced Graph Convolutional Network (CaEGCN)
CaEGCN contains four main modules: cross-attention fusion, Content Auto-encoder, Graph Convolutional Auto-encoder and self-supervised model.
Experimental results on different types of datasets prove the superiority and robustness of the proposed CaEGCN.
arXiv Detail & Related papers (2021-01-18T05:21:59Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Tree Structure-Aware Graph Representation Learning via Integrated
Hierarchical Aggregation and Relational Metric Learning [26.8738194817491]
We propose T-GNN, a tree structure-aware graph neural network model for graph representation learning.
The proposed T-GNN consists of two modules: (1) the integrated hierarchical aggregation module and (2) the relational metric learning module.
arXiv Detail & Related papers (2020-08-23T09:41:19Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
We introduce a Bidirectional Graph Reasoning Network (BGRNet) to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes.
BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level.
arXiv Detail & Related papers (2020-04-14T02:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.