論文の概要: De Novo Molecular Generation with Stacked Adversarial Model
- arxiv url: http://arxiv.org/abs/2110.12454v1
- Date: Sun, 24 Oct 2021 14:23:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 12:00:06.067810
- Title: De Novo Molecular Generation with Stacked Adversarial Model
- Title(参考訳): 重み付き逆数モデルによるデノボ分子生成
- Authors: Yuansan Liu, James Bailey
- Abstract要約: 近年, ド・ノボの薬物設計に期待できるアプローチとして, 条件付き生成逆数モデルが提案されている。
本稿では、2つのモデルを重ね合わせることで、既存の対向オートエンコーダモデルを拡張する新しい生成モデルを提案する。
我々の積み重ねられたアプローチは、既知の薬物とより類似した分子と同様に、より有効な分子を生成する。
- 参考スコア(独自算出の注目度): 24.83456726428956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating novel drug molecules with desired biological properties is a time
consuming and complex task. Conditional generative adversarial models have
recently been proposed as promising approaches for de novo drug design. In this
paper, we propose a new generative model which extends an existing adversarial
autoencoder (AAE) based model by stacking two models together. Our stacked
approach generates more valid molecules, as well as molecules that are more
similar to known drugs. We break down this challenging task into two
sub-problems. A first stage model to learn primitive features from the
molecules and gene expression data. A second stage model then takes these
features to learn properties of the molecules and refine more valid molecules.
Experiments and comparison to baseline methods on the LINCS L1000 dataset
demonstrate that our proposed model has promising performance for molecular
generation.
- Abstract(参考訳): 望ましい生物学的性質を持つ新規な薬物分子の生成は、時間と複雑な作業である。
de novoの薬物設計に有望なアプローチとして、条件付き生成広告モデルが最近提案されている。
本稿では,既存のadversarial autoencoder (aae) ベースのモデルを2つのモデルを積み重ねることで拡張する新しい生成モデルを提案する。
積み重ねられたアプローチは、既知の薬物とより似た分子だけでなく、より有効な分子を生み出します。
この困難なタスクを2つのサブ問題に分割する。
分子と遺伝子発現データから原始的な特徴を学習する第一段階モデル。
第二段階モデルでは、これらの特徴を分子の性質を学習し、より有効な分子を精製する。
LINCS L1000データセットのベースライン法との比較実験により,提案モデルが分子生成に有望な性能を示した。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation [0.6800113478497425]
我々は、分子の最も単純な表現に戻り、古典的生成的アプローチの見過ごされた制限を調査する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T11:50:23Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
テキスト条件付き分子生成のための遅延拡散モデル LDMol を提案する。
LDMolは、学習可能で構造的に有意な特徴空間を生成する分子オートエンコーダを含む。
我々は,LDMolを分子間検索やテキスト誘導分子編集などの下流タスクに適用できることを示す。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - A novel molecule generative model of VAE combined with Transformer for unseen structure generation [0.0]
トランスフォーマーとVAEは強力なモデルとして広く使われているが、構造的ミスマッチと性能的ミスマッチのために組み合わせて使われることは滅多にない。
本研究では, この2つのモデルを組み合わせて, 多様な分子の処理における構造とパラメータの最適化を行うモデルを提案する。
提案モデルでは, 既存の分子生成モデルに匹敵する性能を示し, 未知の構造を持つ分子生成モデルにおいて, はるかに優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-19T08:46:04Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
本稿では,分子を望ましい性質で生成する新しい手法を提案する。
望ましい分子断片を得るため,我々は新しい電子効果に基づくフラグメンテーション法を開発した。
提案手法により生成する分子は, 従来のSOTAモデルより有効, 特異性, 新規性, Fr'echet ChemNet Distance (FCD), QED, PlogP を有することを示す。
論文 参考訳(メタデータ) (2023-10-05T11:43:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。