論文の概要: Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation
- arxiv url: http://arxiv.org/abs/2409.00046v3
- Date: Fri, 6 Sep 2024 06:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 13:11:14.802534
- Title: Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation
- Title(参考訳): 分子設計の再考:ゴール指向生成のための潜在変数モデルと自己回帰モデルの統合
- Authors: Heath Arthur-Loui, Amina Mollaysa, Michael Krauthammer,
- Abstract要約: 我々は、分子の最も単純な表現に戻り、古典的生成的アプローチの見過ごされた制限を調査する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
- 参考スコア(独自算出の注目度): 0.6800113478497425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: De novo molecule design has become a highly active research area, advanced significantly through the use of state-of-the-art generative models. Despite these advances, several fundamental questions remain unanswered as the field increasingly focuses on more complex generative models and sophisticated molecular representations as an answer to the challenges of drug design. In this paper, we return to the simplest representation of molecules, and investigate overlooked limitations of classical generative approaches, particularly Variational Autoencoders (VAEs) and auto-regressive models. We propose a hybrid model in the form of a novel regularizer that leverages the strengths of both to improve validity, conditional generation, and style transfer of molecular sequences. Additionally, we provide an in depth discussion of overlooked assumptions of these models' behaviour.
- Abstract(参考訳): デノボ分子の設計は、最先端の生成モデルを用いることで、非常に活発な研究領域となっている。
これらの進歩にもかかわらず、薬物設計の課題に対する答えとして、この分野はより複雑な生成モデルと洗練された分子表現に焦点を当てているため、いくつかの根本的な疑問は未解決のままである。
本稿では、分子の最も単純な表現に戻り、古典的生成アプローチ、特に変分オートエンコーダ(VAE)や自己回帰モデルにおける見過ごされた制限について検討する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
さらに、これらのモデルの振る舞いの見過ごされた仮定について、深く議論する。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
ディープグラフ生成モデルは、分子設計をグラフ生成問題として扱う。
既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,分子生成の解釈可能なモデルと深層制御可能なモデルを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T08:35:56Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - De Novo Molecular Generation with Stacked Adversarial Model [24.83456726428956]
近年, ド・ノボの薬物設計に期待できるアプローチとして, 条件付き生成逆数モデルが提案されている。
本稿では、2つのモデルを重ね合わせることで、既存の対向オートエンコーダモデルを拡張する新しい生成モデルを提案する。
我々の積み重ねられたアプローチは、既知の薬物とより類似した分子と同様に、より有効な分子を生成する。
論文 参考訳(メタデータ) (2021-10-24T14:23:16Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。