An efficient estimation of time-varying parameters of dynamic models by
combining offline batch optimization and online data assimilation
- URL: http://arxiv.org/abs/2110.12522v1
- Date: Sun, 24 Oct 2021 20:12:12 GMT
- Title: An efficient estimation of time-varying parameters of dynamic models by
combining offline batch optimization and online data assimilation
- Authors: Yohei Sawada
- Abstract summary: I present an efficient and practical method to estimate the time-varying parameters of relatively low dimensional models.
I propose combining offline batch optimization and online data assimilation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is crucially important to estimate unknown parameters in earth system
models by integrating observation and numerical simulation. For many
applications in earth system sciences, the optimization method which allows
parameters to temporally change is required. Here I present an efficient and
practical method to estimate the time-varying parameters of relatively low
dimensional models. I propose combining offline batch optimization and online
data assimilation. In the newly proposed method, called Hybrid Offline Online
Parameter Estimation with Particle Filtering (HOOPE-PF), I constrain the
estimated model parameters in sequential data assimilation to the result of
offline batch optimization in which the posterior distribution of model
parameters is obtained by comparing the simulated and observed climatology. The
HOOPE-PF outperforms the original sampling-importance-resampling particle
filter in the synthetic experiment with the toy model and the real-data
experiment with the conceptual hydrological model. The advantage of HOOPE-PF is
that the performance of the online data assimilation is not greatly affected by
the hyperparameter of ensemble data assimilation which contributes to inflating
the ensemble variance of estimated parameters.
Related papers
- A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
The proposed framework consists of two stages, offline and online.
The online stage leverages those LANDO models to generate new data at a desired time instant.
dimensionality reduction technique is applied to high-dimensional dynamical systems to reduce the computational cost of training.
arXiv Detail & Related papers (2024-09-25T11:13:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Streamlining Ocean Dynamics Modeling with Fourier Neural Operators: A Multiobjective Hyperparameter and Architecture Optimization Approach [5.232806761554172]
We use the advanced search algorithms for multiobjective optimization in DeepHyper to streamline the development of neural networks tailored for ocean modeling.
We demonstrate an approach to enhance the use of FNOs in ocean dynamics forecasting, offering a scalable solution with improved precision.
arXiv Detail & Related papers (2024-04-07T14:29:23Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Optimizing Training Trajectories in Variational Autoencoders via Latent
Bayesian Optimization Approach [0.0]
Unsupervised and semi-supervised ML methods have become widely adopted across multiple areas of physics, chemistry, and materials sciences.
We propose a latent Bayesian optimization (zBO) approach for the hyper parameter trajectory optimization for the unsupervised and semi-supervised ML.
We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system.
arXiv Detail & Related papers (2022-06-30T23:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.