Complete Agent-driven Model-based System Testing for Autonomous Systems
- URL: http://arxiv.org/abs/2110.12586v1
- Date: Mon, 25 Oct 2021 01:55:24 GMT
- Title: Complete Agent-driven Model-based System Testing for Autonomous Systems
- Authors: Kerstin I. Eder (Department of Computer Science, University of
Bristol, United Kingdom), Wen-ling Huang (Department of Mathematics &
Computer Science, University of Bremen, Germany), Jan Peleska (Department of
Mathematics & Computer Science, University of Bremen, Germany)
- Abstract summary: A novel approach to testing complex autonomous transportation systems is described.
It is intended to mitigate some of the most critical problems regarding verification and validation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this position paper, a novel approach to testing complex autonomous
transportation systems (ATS) in the automotive, avionic, and railway domains is
described. It is intended to mitigate some of the most critical problems
regarding verification and validation (V&V) effort for ATS. V&V is known to
become infeasible for complex ATS, when using conventional methods only. The
approach advocated here uses complete testing methods on the module level,
because these establish formal proofs for the logical correctness of the
software. Having established logical correctness, system-level tests are
performed in simulated cloud environments and on the target system. To give
evidence that 'sufficiently many' system tests have been performed with the
target system, a formally justified coverage criterion is introduced. To
optimise the execution of very large system test suites, we advocate an online
testing approach where multiple tests are executed in parallel, and test steps
are identified on-the-fly. The coordination and optimisation of these
executions is achieved by an agent-based approach. Each aspect of the testing
approach advocated here is shown to either be consistent with existing
standards for development and V&V of safety-critical transportation systems, or
it is justified why it should become acceptable in future revisions of the
applicable standards.
Related papers
- Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings.
We propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting.
arXiv Detail & Related papers (2024-04-07T22:31:34Z) - Automated System-level Testing of Unmanned Aerial Systems [2.2249176072603634]
A major requirement of international safety standards is to perform rigorous system-level testing of avionics software systems.
The proposed approach (AITester) utilizes model-based testing and artificial intelligence (AI) techniques to automatically generate, execute, and evaluate various test scenarios.
arXiv Detail & Related papers (2024-03-23T14:47:26Z) - Towards Reliable AI: Adequacy Metrics for Ensuring the Quality of
System-level Testing of Autonomous Vehicles [5.634825161148484]
We introduce a set of black-box test adequacy metrics called "Test suite Instance Space Adequacy" (TISA) metrics.
The TISA metrics offer a way to assess both the diversity and coverage of the test suite and the range of bugs detected during testing.
We evaluate the efficacy of the TISA metrics by examining their correlation with the number of bugs detected in system-level simulation testing of AVs.
arXiv Detail & Related papers (2023-11-14T10:16:05Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
Testing, verification and validation AD/ADAS safety-critical applications remain as one the main challenges.
We explain the simulation-based development platform that is designed to verify and validate safety-critical learning-enabled systems.
arXiv Detail & Related papers (2023-09-28T09:00:31Z) - Benchmarking Test-Time Adaptation against Distribution Shifts in Image
Classification [77.0114672086012]
Test-time adaptation (TTA) is a technique aimed at enhancing the generalization performance of models by leveraging unlabeled samples solely during prediction.
We present a benchmark that systematically evaluates 13 prominent TTA methods and their variants on five widely used image classification datasets.
arXiv Detail & Related papers (2023-07-06T16:59:53Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV) allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment.
The DRV Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations.
arXiv Detail & Related papers (2023-07-01T02:03:49Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - A Survey on Scenario-Based Testing for Automated Driving Systems in
High-Fidelity Simulation [26.10081199009559]
Testing the system on the road is the closest to real-world and desirable approach, but it is incredibly costly.
A popular alternative is to evaluate an ADS's performance in some well-designed challenging scenarios, a.k.a. scenario-based testing.
High-fidelity simulators have been widely used in this setting to maximize flexibility and convenience in testing what-if scenarios.
arXiv Detail & Related papers (2021-12-02T03:41:33Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.