論文の概要: Accelerate 3D Object Processing via Spectral Layout
- arxiv url: http://arxiv.org/abs/2110.12621v2
- Date: Thu, 28 Oct 2021 00:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 12:56:58.897213
- Title: Accelerate 3D Object Processing via Spectral Layout
- Title(参考訳): スペクトルレイアウトによる3次元オブジェクト処理の高速化
- Authors: Yongyu Wang
- Abstract要約: 本稿では,3次元オブジェクトに重要な情報を2次元空間に包含する手法を提案する。
提案手法は3Dオブジェクトに対して高品質な2D表現を実現し,3Dオブジェクトの処理に2Dベースの手法を用いることができる。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D image processing is an important problem in computer vision and pattern
recognition fields. Compared with 2D image processing, its computation
difficulty and cost are much higher due to the extra dimension. To
fundamentally address this problem, we propose to embed the essential
information in a 3D object into 2D space via spectral layout. Specifically, we
construct a 3D adjacency graph to capture spatial structure of the 3D voxel
grid. Then we calculate the eigenvectors corresponding to the second and third
smallest eigenvalues of its graph Laplacian and perform spectral layout to map
each voxel into a pixel in 2D Cartesian coordinate plane. The proposed method
can achieve high quality 2D representations for 3D objects, which enables to
use 2D-based methods to process 3D objects. The experimental results
demonstrate the effectiveness and efficiency of our method.
- Abstract(参考訳): 3次元画像処理はコンピュータビジョンとパターン認識の分野で重要な問題である。
2次元画像処理と比較すると、余剰次元のため計算の困難さとコストがはるかに高い。
そこで本研究では,3dオブジェクトの基本的な情報をスペクトルレイアウトにより2次元空間に埋め込む手法を提案する。
具体的には、3次元ボクセル格子の空間構造を捉える3次元隣接グラフを構築する。
次に、グラフラプラシアンの第2および第3の最小固有値に対応する固有ベクトルを計算し、各ボクセルを2次元直交座標平面内の画素にマッピングするためのスペクトルレイアウトを行う。
提案手法は3Dオブジェクトに対して高品質な2D表現を実現し,3Dオブジェクトの処理に2Dベースの手法を用いることができる。
実験の結果,本手法の有効性と有効性を示した。
関連論文リスト
- SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
本稿では,画像投影による問題点を軽減するために,3次元空間における点軌道の推定を提案する。
この手法はSpatialTrackerと呼ばれ、2Dピクセルをモノクロ深度推定器を用いて3Dにリフトする。
3Dでのトラッキングにより、ピクセルを異なる剛性部分にクラスタ化する剛性埋め込みを同時に学習しながら、ARAP(as-rigid-as-possible)制約を活用することができます。
論文 参考訳(メタデータ) (2024-04-05T17:59:25Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) は,マルチビュー一貫性画像と3Dジオメトリを生成する学習において,顕著な進歩を見せている。
しかし、ボリュームレンダリングにおける高密度サンプリングの大幅なメモリと計算コストにより、3D GANはパッチベースのトレーニングを採用するか、後処理の2Dスーパーレゾリューションで低解像度レンダリングを採用することを余儀なくされた。
ニューラルボリュームレンダリングをネイティブ2次元画像の高解像度化に拡張する手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T18:50:38Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
本稿では,3次元形状をコンパクトな1チャネル幾何画像に変換し,StyleGAN3と画像間翻訳ネットワークを利用して2次元空間で3次元オブジェクトを生成する手法を提案する。
生成された幾何学画像は素早く3Dメッシュに変換し、リアルタイムな3Dオブジェクト合成、可視化、インタラクティブな編集を可能にする。
近年の3次元生成モデルと比較して,より高速かつ柔軟な3次元形状生成,単一ビュー再構成,形状操作などの様々なタスクにおいて,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2022-10-06T15:54:01Z) - DM-NeRF: 3D Scene Geometry Decomposition and Manipulation from 2D Images [15.712721653893636]
DM-NeRFは、1つのパイプラインで複雑な3Dシーンを同時に再構築、分解、操作、レンダリングする最初のものである。
提案手法は,3次元オブジェクトを2次元ビューから正確に分解し,任意のオブジェクトを3次元空間で自由に操作することができる。
論文 参考訳(メタデータ) (2022-08-15T14:32:10Z) - 3D object reconstruction and 6D-pose estimation from 2D shape for
robotic grasping of objects [2.330913682033217]
本研究では,2次元画像からの3次元オブジェクト再構成と6次元位置推定手法を提案する。
2次元画像から直接変換パラメータを計算することにより、登録プロセスに必要な自由パラメータの数を削減できる。
ロボット実験では、オブジェクトの把握が成功し、実際の環境でのユーザビリティが実証される。
論文 参考訳(メタデータ) (2022-03-02T11:58:35Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
形状認識型2D/3D制約を3D検出フレームワークに組み込む手法を提案する。
具体的には、ディープニューラルネットワークを用いて、2次元画像領域の区別された2Dキーポイントを学習する。
2D/3Dキーポイントの基礎的真理を生成するために、自動的なモデル適合手法が提案されている。
論文 参考訳(メタデータ) (2021-08-25T08:50:06Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
CNNを用いて3次元形状をモデル化するための汎用フレームワークを提案する。
オブジェクトの1つの深度画像だけで、3Dオブジェクトの高密度な多視点深度マップ表現を出力できる。
論文 参考訳(メタデータ) (2020-09-07T17:58:27Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。