Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
- URL: http://arxiv.org/abs/2110.12752v1
- Date: Mon, 25 Oct 2021 09:25:04 GMT
- Title: Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
- Authors: Felix L. Opolka, Yin-Cong Zhi, Pietro Li\`o, Xiaowen Dong
- Abstract summary: We propose a process model using spectral graph wavelets, which can aggregate information at different scales.
We achieve scalability to larger graphs by using a spectrum-adaptive approximation of the filter function, which is designed to yield a low approximation error in dense areas of the graph spectrum.
- Score: 3.2498534294827044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based models require aggregating information in the graph from
neighbourhoods of different sizes. In particular, when the data exhibit varying
levels of smoothness on the graph, a multi-scale approach is required to
capture the relevant information. In this work, we propose a Gaussian process
model using spectral graph wavelets, which can naturally aggregate
neighbourhood information at different scales. Through maximum likelihood
optimisation of the model hyperparameters, the wavelets automatically adapt to
the different frequencies in the data, and as a result our model goes beyond
capturing low frequency information. We achieve scalability to larger graphs by
using a spectrum-adaptive polynomial approximation of the filter function,
which is designed to yield a low approximation error in dense areas of the
graph spectrum. Synthetic and real-world experiments demonstrate the ability of
our model to infer scales accurately and produce competitive performances
against state-of-the-art models in graph-based learning tasks.
Related papers
- Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - Neural Scaling Laws on Graphs [54.435688297561015]
We study neural scaling laws on graphs from both model and data perspectives.
For model scaling, we investigate the phenomenon of scaling law collapse and identify overfitting as the potential reason.
For data scaling, we suggest that the number of graphs can not effectively metric the graph data volume in scaling law since the sizes of different graphs are highly irregular.
arXiv Detail & Related papers (2024-02-03T06:17:21Z) - Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
Graph classification aims to categorise graphs based on their structure and node attributes.
In this work, we propose to tackle this task using tools from graph signal processing by deriving spectral features.
We show that even such a simple approach, having no learned parameters, can yield competitive performance compared to strong neural network and graph kernel baselines.
arXiv Detail & Related papers (2023-06-06T15:31:05Z) - Large Graph Signal Denoising with Application to Differential Privacy [2.867517731896504]
We consider the case of signal denoising on graphs via a data-driven wavelet tight frame methodology.
We make it scalable to large graphs using Chebyshev-Jackson approximations.
A comprehensive performance analysis is carried out on graphs of varying size, from real and simulated data.
arXiv Detail & Related papers (2022-09-05T16:32:54Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Stacked Graph Filter [19.343260981528186]
We study Graph Convolutional Networks (GCN) from the graph signal processing viewpoint.
We find that by stacking graph filters with learnable solution parameters, we can build a highly adaptive and robust graph classification model.
arXiv Detail & Related papers (2020-11-22T11:20:14Z) - FiGLearn: Filter and Graph Learning using Optimal Transport [49.428169585114496]
We introduce a novel graph signal processing framework for learning the graph and its generating filter from signal observations.
We show how this framework can be used to infer missing values if only very little information is available.
arXiv Detail & Related papers (2020-10-29T10:00:42Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Graph Convolution with Low-rank Learnable Local Filters [32.00396411583352]
This paper introduces a new type of graph convolution with learnable low-rank local filters.
It is provably more expressive than previous spectral graph convolution methods.
The representation against input graph data is theoretically proved, making use of the graph filter locality and the local graph regularization.
arXiv Detail & Related papers (2020-08-04T20:34:59Z) - Gaussian Processes on Graphs via Spectral Kernel Learning [9.260186030255081]
We propose a graph spectrum-based Gaussian process for prediction of signals defined on nodes of the graph.
We demonstrate the interpretability of the model in synthetic experiments from which we show the various ground truth spectral filters can be accurately recovered.
arXiv Detail & Related papers (2020-06-12T17:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.