Tackling the Local Bias in Federated Graph Learning
- URL: http://arxiv.org/abs/2110.12906v3
- Date: Sun, 25 Aug 2024 06:19:22 GMT
- Title: Tackling the Local Bias in Federated Graph Learning
- Authors: Binchi Zhang, Minnan Luo, Shangbin Feng, Ziqi Liu, Jun Zhou, Qinghua Zheng,
- Abstract summary: In Federated graph learning (FGL), a global graph is distributed across different clients, where each client holds a subgraph.
Existing FGL methods fail to effectively utilize cross-client edges, losing structural information during the training.
We propose a novel FGL framework to make the local models similar to the model trained in a centralized setting.
- Score: 48.887310972708036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated graph learning (FGL) has become an important research topic in response to the increasing scale and the distributed nature of graph-structured data in the real world. In FGL, a global graph is distributed across different clients, where each client holds a subgraph. Existing FGL methods often fail to effectively utilize cross-client edges, losing structural information during the training; additionally, local graphs often exhibit significant distribution divergence. These two issues make local models in FGL less desirable than in centralized graph learning, namely the local bias problem in this paper. To solve this problem, we propose a novel FGL framework to make the local models similar to the model trained in a centralized setting. Specifically, we design a distributed learning scheme, fully leveraging cross-client edges to aggregate information from other clients. In addition, we propose a label-guided sampling approach to alleviate the imbalanced local data and meanwhile, distinctly reduce the training overhead. Extensive experiments demonstrate that local bias can compromise the model performance and slow down the convergence during training. Experimental results also verify that our framework successfully mitigates local bias, achieving better performance than other baselines with lower time and memory overhead.
Related papers
- SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation [16.599474223790843]
Federated Graph Learning (FGL) has garnered widespread attention by enabling collaborative training on multiple clients for classification tasks.
We propose a novel FGL framework, named SpreadFGL, to promote the information flow in edge-client collaboration.
We show that SpreadFGL achieves higher accuracy and faster convergence against state-of-the-art algorithms.
arXiv Detail & Related papers (2024-07-14T09:34:19Z) - FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning [10.641875933652647]
Federated Learning (FL) is a novel approach that allows for collaborative machine learning.
FL faces challenges due to non-uniformly distributed (non-iid) data across clients.
This paper introduces FedDistill, a framework enhancing the knowledge transfer from the global model to local models.
arXiv Detail & Related papers (2024-04-14T10:23:30Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
Federated learning (FL) aims to collaboratively train a shared model across multiple clients without transmitting their local data.
We propose FedBalance, which corrects the optimization bias among local models by calibrating their logits.
Our method can gain 13% higher average accuracy compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-11-14T14:37:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - SphereFed: Hyperspherical Federated Learning [22.81101040608304]
Key challenge is the handling of non-i.i.d. data across multiple clients.
We introduce the Hyperspherical Federated Learning (SphereFed) framework to address the non-i.i.d. issue.
We show that the calibration solution can be computed efficiently and distributedly without direct access of local data.
arXiv Detail & Related papers (2022-07-19T17:13:06Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Data Selection for Efficient Model Update in Federated Learning [0.07614628596146598]
We propose to reduce the amount of local data that is needed to train a global model.
We do this by splitting the model into a lower part for generic feature extraction and an upper part that is more sensitive to the characteristics of the local data.
Our experiments show that less than 1% of the local data can transfer the characteristics of the client data to the global model.
arXiv Detail & Related papers (2021-11-05T14:07:06Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.