FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning
- URL: http://arxiv.org/abs/2404.09210v1
- Date: Sun, 14 Apr 2024 10:23:30 GMT
- Title: FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning
- Authors: Changlin Song, Divya Saxena, Jiannong Cao, Yuqing Zhao,
- Abstract summary: Federated Learning (FL) is a novel approach that allows for collaborative machine learning.
FL faces challenges due to non-uniformly distributed (non-iid) data across clients.
This paper introduces FedDistill, a framework enhancing the knowledge transfer from the global model to local models.
- Score: 10.641875933652647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a novel approach that allows for collaborative machine learning while preserving data privacy by leveraging models trained on decentralized devices. However, FL faces challenges due to non-uniformly distributed (non-iid) data across clients, which impacts model performance and its generalization capabilities. To tackle the non-iid issue, recent efforts have utilized the global model as a teaching mechanism for local models. However, our pilot study shows that their effectiveness is constrained by imbalanced data distribution, which induces biases in local models and leads to a 'local forgetting' phenomenon, where the ability of models to generalize degrades over time, particularly for underrepresented classes. This paper introduces FedDistill, a framework enhancing the knowledge transfer from the global model to local models, focusing on the issue of imbalanced class distribution. Specifically, FedDistill employs group distillation, segmenting classes based on their frequency in local datasets to facilitate a focused distillation process to classes with fewer samples. Additionally, FedDistill dissects the global model into a feature extractor and a classifier. This separation empowers local models with more generalized data representation capabilities and ensures more accurate classification across all classes. FedDistill mitigates the adverse effects of data imbalance, ensuring that local models do not forget underrepresented classes but instead become more adept at recognizing and classifying them accurately. Our comprehensive experiments demonstrate FedDistill's effectiveness, surpassing existing baselines in accuracy and convergence speed across several benchmark datasets.
Related papers
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
Federated learning (FL) aims to collaboratively train a shared model across multiple clients without transmitting their local data.
We propose FedBalance, which corrects the optimization bias among local models by calibrating their logits.
Our method can gain 13% higher average accuracy compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-11-14T14:37:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) is a novel FL algorithm in which clients rely on knowledge distillation to train local models.
Unlike other KD-based pFL methods, FedHKD does not rely on a public dataset nor it deploys a generative model at the server.
We conduct extensive experiments on visual datasets in a variety of scenarios, demonstrating that FedHKD provides significant improvement in both personalized as well as global model performance.
arXiv Detail & Related papers (2023-01-21T16:20:57Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Tackling the Local Bias in Federated Graph Learning [48.887310972708036]
In Federated graph learning (FGL), a global graph is distributed across different clients, where each client holds a subgraph.
Existing FGL methods fail to effectively utilize cross-client edges, losing structural information during the training.
We propose a novel FGL framework to make the local models similar to the model trained in a centralized setting.
arXiv Detail & Related papers (2021-10-22T08:22:36Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
Federated learning is a method of training models on private data distributed over multiple devices.
We propose a new federated learning algorithm that jointly learns compact local representations on each device.
We also evaluate on the task of personalized mood prediction from real-world mobile data where privacy is key.
arXiv Detail & Related papers (2020-01-06T12:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.