FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
- URL: http://arxiv.org/abs/2504.21206v1
- Date: Tue, 29 Apr 2025 22:23:35 GMT
- Title: FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
- Authors: Zihan Chen, Xingbo Fu, Yushun Dong, Jundong Li, Cong Shen,
- Abstract summary: Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner.<n>FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes.<n>We propose FedHERO, an FGL framework designed to harness and share insights from heterophilic graphs effectively.
- Score: 55.51300642911766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner while preserving data privacy. However, FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes. Such an assumption ensures that the learned knowledge is consistent across the local models from all clients. Therefore, these local models can be properly aggregated as a global model without undermining the overall performance. Nevertheless, when the neighbor distribution patterns of nodes vary across different clients (e.g., when clients hold graphs with different levels of heterophily), their local models may gain different and even conflict knowledge from their node-level predictive tasks. Consequently, aggregating these local models usually leads to catastrophic performance deterioration on the global model. To address this challenge, we propose FedHERO, an FGL framework designed to harness and share insights from heterophilic graphs effectively. At the heart of FedHERO is a dual-channel GNN equipped with a structure learner, engineered to discern the structural knowledge encoded in the local graphs. With this specialized component, FedHERO enables the local model for each client to identify and learn patterns that are universally applicable across graphs with different patterns of node neighbor distributions. FedHERO not only enhances the performance of individual client models by leveraging both local and shared structural insights but also sets a new precedent in this field to effectively handle graph data with various node neighbor distribution patterns. We conduct extensive experiments to validate the superior performance of FedHERO against existing alternatives.
Related papers
- Enhancing Federated Graph Learning via Adaptive Fusion of Structural and Node Characteristics [26.619187557486708]
Federated Graph Learning (FGL) has demonstrated the advantage of training a global Graph Neural Network (GNN) model across distributed clients.<n>We propose a novel FGL framework, named FedGCF, which aims to simultaneously extract and fuse structural properties and node features.
arXiv Detail & Related papers (2024-12-25T09:20:06Z) - One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs [61.9759512646523]
Graph Neural Networks (GNNs) have emerged as a powerful tool to capture intricate network patterns.
Existing GNNs require careful domain-specific architecture designs and training from scratch on each dataset.
We propose a novel cross-domain pretraining framework, "one model for one graph"
arXiv Detail & Related papers (2024-11-30T01:49:45Z) - FedRGL: Robust Federated Graph Learning for Label Noise [5.296582539751589]
Federated Graph Learning (FGL) is a distributed machine learning paradigm based on graph neural networks.<n>We propose a robust federated graph learning method with label noise, termed FedRGL.<n>We show that FedRGL outperforms 12 baseline methods across various noise rates, types, and numbers of clients.
arXiv Detail & Related papers (2024-11-28T04:37:04Z) - Federated Graph Learning with Graphless Clients [52.5629887481768]
Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs)
We propose a novel framework FedGLS to tackle the problem in FGL with graphless clients.
arXiv Detail & Related papers (2024-11-13T06:54:05Z) - Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
arXiv Detail & Related papers (2024-08-18T07:32:54Z) - Federated Graph Semantic and Structural Learning [54.97668931176513]
This paper reveals that local client distortion is brought by both node-level semantics and graph-level structure.
We postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships.
We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model.
arXiv Detail & Related papers (2024-06-27T07:08:28Z) - FedSheafHN: Personalized Federated Learning on Graph-structured Data [22.825083541211168]
We propose a model called FedSheafHN, which embeds each client's local subgraph into a server-constructed collaboration graph.
Our model improves the integration and interpretation of complex client characteristics.
It also has fast model convergence and effective new clients generalization.
arXiv Detail & Related papers (2024-05-25T04:51:41Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - AdaFGL: A New Paradigm for Federated Node Classification with Topology
Heterogeneity [44.11777886421429]
Federated Graph Learning (FGL) has attracted significant attention as a distributed framework based on graph neural networks.
We introduce the concept of structure Non-iid split and then present a new paradigm called underlineAdaptive underlineFederated underlineGraph underlineLearning (AdaFGL)
Our proposed AdaFGL outperforms baselines by significant margins of 3.24% and 5.57% on community split and structure Non-iid split, respectively.
arXiv Detail & Related papers (2024-01-22T08:23:31Z) - GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts [75.51612253852002]
GraphMETRO is a Graph Neural Network architecture that models natural diversity and captures complex distributional shifts.
GraphMETRO achieves state-of-the-art results on four datasets from the GOOD benchmark.
arXiv Detail & Related papers (2023-12-07T20:56:07Z) - Personalized Subgraph Federated Learning [56.52903162729729]
We introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs.
We propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it.
We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs.
arXiv Detail & Related papers (2022-06-21T09:02:53Z) - Node-wise Localization of Graph Neural Networks [52.04194209002702]
Graph neural networks (GNNs) emerge as a powerful family of representation learning models on graphs.
We propose a node-wise localization of GNNs by accounting for both global and local aspects of the graph.
We conduct extensive experiments on four benchmark graphs, and consistently obtain promising performance surpassing the state-of-the-art GNNs.
arXiv Detail & Related papers (2021-10-27T10:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.