論文の概要: Improving the Diversity of Unsupervised Paraphrasing with Embedding
Outputs
- arxiv url: http://arxiv.org/abs/2110.13231v1
- Date: Mon, 25 Oct 2021 19:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 15:04:51.049714
- Title: Improving the Diversity of Unsupervised Paraphrasing with Embedding
Outputs
- Title(参考訳): 埋め込み出力による教師なしパラフレーズの多様性向上
- Authors: Monisha Jegadeesan, Sachin Kumar, John Wieting, Yulia Tsvetkov
- Abstract要約: ゼロショットパラフレーズ生成のための新しい手法を提案する。
主な貢献は、翻訳された並列コーパスを用いて訓練されたエンドツーエンドの多言語パラフレーズモデルである。
- 参考スコア(独自算出の注目度): 28.16894664889912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel technique for zero-shot paraphrase generation. The key
contribution is an end-to-end multilingual paraphrasing model that is trained
using translated parallel corpora to generate paraphrases into "meaning spaces"
-- replacing the final softmax layer with word embeddings. This architectural
modification, plus a training procedure that incorporates an autoencoding
objective, enables effective parameter sharing across languages for more fluent
monolingual rewriting, and facilitates fluency and diversity in generation. Our
continuous-output paraphrase generation models outperform zero-shot
paraphrasing baselines when evaluated on two languages using a battery of
computational metrics as well as in human assessment.
- Abstract(参考訳): ゼロショットパラフレーズ生成のための新しい手法を提案する。
重要なコントリビューションは、翻訳された並列コーパスを使用してトレーニングされたエンドツーエンドの多言語パラフレーズモデルで、パラフレーズを"意味空間"に生成し、最終的なソフトマックス層を単語埋め込みに置き換える。
このアーキテクチャ修正に加えて、自動エンコーディングの目的を組み込んだトレーニング手順は、より流動的なモノリンガルな書き換えのために言語間で効果的なパラメータ共有を可能にし、生成の流布と多様性を促進する。
連続出力パラフレーズ生成モデルは、計算量と人的評価の電池を用いて2言語で評価した場合、ゼロショットパラフレーズベースラインを上回った。
関連論文リスト
- Multilingual Lexical Simplification via Paraphrase Generation [19.275642346073557]
パラフレーズ生成による新しい多言語LS法を提案する。
パラフレーズ処理は多言語ニューラルマシン翻訳におけるゼロショット翻訳タスクとみなす。
提案手法は,英語,スペイン語,ポルトガル語で,BERT法とゼロショットGPT3法を大きく上回る。
論文 参考訳(メタデータ) (2023-07-28T03:47:44Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
私たちは、バイリンガルテキスト(bitext)からのみ学ぶことができるように、以前の作業からモデルを適用する。
提案した1つのモデルでは、両言語で制御されたパラフレーズ生成と、両言語で制御された機械翻訳の4つのタスクを実行することができる。
論文 参考訳(メタデータ) (2020-10-12T17:02:50Z) - Paraphrase Generation as Zero-Shot Multilingual Translation:
Disentangling Semantic Similarity from Lexical and Syntactic Diversity [11.564158965143418]
本稿では,入力に含まれるn-gramの生成を阻害する単純なパラフレーズ生成アルゴリズムを提案する。
一つの多言語NMTモデルから多くの言語でパラフレーズ生成が可能となる。
論文 参考訳(メタデータ) (2020-08-11T18:05:34Z) - Pre-training via Paraphrasing [96.79972492585112]
教師なし多言語パラフレージング目的を用いて学習した,事前学習されたシーケンス・ツー・シーケンスモデルであるMARGEを紹介する。
ランダムな初期化のみを前提として,検索と再構築を共同で行うことができることを示す。
例えば、追加のタスク固有のトレーニングがなければ、文書翻訳のBLEUスコアは最大35.8に達する。
論文 参考訳(メタデータ) (2020-06-26T14:43:43Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
本稿では,言語生成モデルが確実に生成できる多様性のレベルを探索するために,Imitation Learningアプローチを提案する。
具体的には、任意のタイミングでどの単語が高品質な出力につながるかを識別するように訓練されたメタ分類器を用いて復号処理を強化する。
論文 参考訳(メタデータ) (2020-04-29T17:43:24Z) - Incorporating Bilingual Dictionaries for Low Resource Semi-Supervised
Neural Machine Translation [5.958653653305609]
我々は、単語・バイ・ワードの翻訳によって合成文を生成する、広く利用可能なバイリンガル辞書を組み込んだ。
これにより、高品質なコンテンツを維持しながら、モデルの語彙を自動的に拡張する。
論文 参考訳(メタデータ) (2020-04-05T02:14:14Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。