Online Variational Filtering and Parameter Learning
- URL: http://arxiv.org/abs/2110.13549v1
- Date: Tue, 26 Oct 2021 10:25:04 GMT
- Title: Online Variational Filtering and Parameter Learning
- Authors: Andrew Campbell, Yuyang Shi, Tom Rainforth, Arnaud Doucet
- Abstract summary: We present a variational method for online state estimation and parameter learning in state-space models (SSMs)
We use gradients to simultaneously optimize a lower bound on the log evidence with respect to both model parameters and a variational approximation of the states' posterior distribution.
Unlike existing approaches, our method is able to operate in an entirely online manner, such that historic observations do not require revisitation after being incorporated and the cost of updates at each time step remains constant.
- Score: 26.79116194327116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a variational method for online state estimation and parameter
learning in state-space models (SSMs), a ubiquitous class of latent variable
models for sequential data. As per standard batch variational techniques, we
use stochastic gradients to simultaneously optimize a lower bound on the log
evidence with respect to both model parameters and a variational approximation
of the states' posterior distribution. However, unlike existing approaches, our
method is able to operate in an entirely online manner, such that historic
observations do not require revisitation after being incorporated and the cost
of updates at each time step remains constant, despite the growing
dimensionality of the joint posterior distribution of the states. This is
achieved by utilizing backward decompositions of this joint posterior
distribution and of its variational approximation, combined with Bellman-type
recursions for the evidence lower bound and its gradients. We demonstrate the
performance of this methodology across several examples, including
high-dimensional SSMs and sequential Variational Auto-Encoders.
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
We propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach.
The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes.
arXiv Detail & Related papers (2022-05-18T09:03:00Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
We identify a class of models for hybrid dynamical systems characterized by nonlinear autoregressive (NARX) components.
The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.
arXiv Detail & Related papers (2020-09-29T15:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.