Can Character-based Language Models Improve Downstream Task Performance in Low-Resource and Noisy Language Scenarios?
- URL: http://arxiv.org/abs/2110.13658v2
- Date: Tue, 03 Jun 2025 16:11:13 GMT
- Title: Can Character-based Language Models Improve Downstream Task Performance in Low-Resource and Noisy Language Scenarios?
- Authors: Arij Riabi, Benoît Sagot, Djamé Seddah,
- Abstract summary: We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.<n>We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
- Score: 15.995677143912474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent impressive improvements in NLP, largely based on the success of contextual neural language models, have been mostly demonstrated on at most a couple dozen high-resource languages. Building language models and, more generally, NLP systems for non-standardized and low-resource languages remains a challenging task. In this work, we focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi, found mostly on social media and messaging communication. In this low-resource scenario with data displaying a high level of variability, we compare the downstream performance of a character-based language model on part-of-speech tagging and dependency parsing to that of monolingual and multilingual models. We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank of this language leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models. Confirming these results a on much larger data set of noisy French user-generated content, we argue that such character-based language models can be an asset for NLP in low-resource and high language variability set-tings.
Related papers
- Natural language processing for African languages [7.884789325654572]
dissertation focuses on languages spoken in Sub-Saharan Africa where all the indigenous languages can be regarded as low-resourced.<n>We show that the quality of semantic representations learned in word embeddings does not only depend on the amount of data but on the quality of pre-training data.<n>We develop large scale human-annotated labelled datasets for 21 African languages in two impactful NLP tasks.
arXiv Detail & Related papers (2025-06-30T22:26:36Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Are Multilingual Models the Best Choice for Moderately Under-resourced
Languages? A Comprehensive Assessment for Catalan [0.05277024349608833]
This work focuses on Catalan with the aim of exploring what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models.
We build a clean, high-quality textual Catalan corpus (CaText), train a Transformer-based language model for Catalan (BERTa), and devise a thorough evaluation in a diversity of settings.
The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource.
arXiv Detail & Related papers (2021-07-16T13:52:01Z) - BanglaBERT: Combating Embedding Barrier for Low-Resource Language
Understanding [1.7000879291900044]
We build a Bangla natural language understanding model pre-trained on 18.6 GB data we crawled from top Bangla sites on the internet.
Our model outperforms multilingual baselines and previous state-of-the-art results by 1-6%.
We identify a major shortcoming of multilingual models that hurt performance for low-resource languages that don't share writing scripts with any high resource one.
arXiv Detail & Related papers (2021-01-01T09:28:45Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP.
We show that such models behave in multiple ways on unseen languages.
arXiv Detail & Related papers (2020-10-24T10:15:03Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Can Multilingual Language Models Transfer to an Unseen Dialect? A Case
Study on North African Arabizi [2.76240219662896]
We study the ability of multilingual language models to process an unseen dialect.
We take user generated North-African Arabic as our case study.
We show in zero-shot and unsupervised adaptation scenarios that multilingual language models are able to transfer to such an unseen dialect.
arXiv Detail & Related papers (2020-05-01T11:29:23Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
We train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together.
Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
arXiv Detail & Related papers (2017-08-30T08:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.