論文の概要: Geometric Transformer for End-to-End Molecule Properties Prediction
- arxiv url: http://arxiv.org/abs/2110.13721v1
- Date: Tue, 26 Oct 2021 14:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 18:46:45.334344
- Title: Geometric Transformer for End-to-End Molecule Properties Prediction
- Title(参考訳): エンドツーエンド分子特性予測のための幾何学変換器
- Authors: Yoni Choukroun and Lior Wolf
- Abstract要約: 分子特性予測のためのトランスフォーマーに基づくアーキテクチャを導入し,分子の形状を捉える。
分子幾何学の初期符号化による古典的な位置エンコーダと、学習されたゲート自己保持機構を改変する。
- 参考スコア(独自算出の注目度): 92.28929858529679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have become methods of choice in many applications thanks to
their ability to represent complex interaction between elements. However,
extending the Transformer architecture to non-sequential data such as molecules
and enabling its training on small datasets remain a challenge. In this work,
we introduce a Transformer-based architecture for molecule property prediction,
which is able to capture the geometry of the molecule. We modify the classical
positional encoder by an initial encoding of the molecule geometry, as well as
a learned gated self-attention mechanism. We further suggest an augmentation
scheme for molecular data capable of avoiding the overfitting induced by the
overparameterized architecture. The proposed framework outperforms the
state-of-the-art methods while being based on pure machine learning solely,
i.e. the method does not incorporate domain knowledge from quantum chemistry
and does not use extended geometric inputs beside the pairwise atomic
distances.
- Abstract(参考訳): トランスフォーマーは、要素間の複雑な相互作用を表現する能力のおかげで、多くのアプリケーションで選択の方法となっている。
しかし、Transformerアーキテクチャを分子などの非逐次データに拡張し、小さなデータセットでのトレーニングを可能にすることは依然として課題である。
本稿では,分子の幾何構造を捉えることができる分子特性予測のためのトランスフォーマーアーキテクチャを提案する。
分子幾何学の初期符号化による古典的な位置エンコーダと、学習されたゲート自己保持機構を改変する。
さらに,オーバーパラメータ化アーキテクチャによって引き起こされる過剰フィッティングを回避できる分子データの拡張手法を提案する。
提案手法は、純粋機械学習のみをベースにした最先端の手法よりも優れており、量子化学の分野知識を取り入れておらず、原子距離の両側に拡張された幾何学的入力を使用しない。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - GeoMFormer: A General Architecture for Geometric Molecular Representation Learning [84.02083170392764]
我々はこの目的を達成するためにGeoMFormerと呼ばれるトランスフォーマーに基づく新しい分子モデルを導入する。
我々は,GeoMFormerが,異なる型やスケールの不変タスクと同変タスクの両方において,高い性能を達成することを示す。
論文 参考訳(メタデータ) (2024-06-24T17:58:13Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - Multiresolution Graph Transformers and Wavelet Positional Encoding for
Learning Hierarchical Structures [6.875312133832078]
複数のスケールで大きな分子を表現できる最初のグラフトランスアーキテクチャであるMulti resolution Graph Transformer (MGT)を提案する。
MGTは原子の表現を学習し、それらを有意義な官能基または繰り返し単位に分類することができる。
提案モデルでは, 高分子とペプチドからなるマクロ分子データセットと, 薬物様分子データセットの2つの結果を得た。
論文 参考訳(メタデータ) (2023-02-17T01:32:44Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Atomic structure generation from reconstructing structural fingerprints [1.2128971613239876]
本稿では、原子中心対称性関数を表現として、条件付き変分オートエンコーダを生成モデルとして、エンドツーエンド構造生成手法を提案する。
我々は、概念実証として、サブナノメーターPtナノ粒子の新規で有効な原子構造を生成することに成功した。
論文 参考訳(メタデータ) (2022-07-27T00:42:59Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。