論文の概要: Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding
- arxiv url: http://arxiv.org/abs/2403.11686v1
- Date: Mon, 18 Mar 2024 11:37:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:28:10.306112
- Title: Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding
- Title(参考訳): Crystalformer: 周期構造エンコーディングのための無期限接続型アテンション
- Authors: Tatsunori Taniai, Ryo Igarashi, Yuta Suzuki, Naoya Chiba, Kotaro Saito, Yoshitaka Ushiku, Kanta Ono,
- Abstract要約: 結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 10.170537065646323
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally tractable formulation, interpreted as neural potential summation, that performs infinite interatomic potential summations in a deeply learned feature space. We then propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer. Compared to an existing Transformer-based model, the proposed model requires only 29.4% of the number of parameters, with minimal modifications to the original Transformer architecture. Despite the architectural simplicity, the proposed method outperforms state-of-the-art methods for various property regression tasks on the Materials Project and JARVIS-DFT datasets.
- Abstract(参考訳): 結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
分子特性の予測のような周辺領域では、完全に連結された注意ネットワークが成功している。
しかし、これらの有限原子配置とは異なり、結晶構造は無限に繰り返し、周期的な原子配置であり、完全に連結された注意は無限に連結された注意をもたらす。
本研究では、この無限に連結された注意が、深く学習された特徴空間において無限の原子間ポテンシャル和を実行するニューラルポテンシャル和として解釈された、計算的に抽出可能な定式化につながることを示す。
そこで我々は,Crystalformerと呼ばれる結晶構造に対して,シンプルで効果的なTransformerベースのエンコーダアーキテクチャを提案する。
既存のTransformerベースのモデルと比較して、提案されたモデルではパラメータの29.4%しか必要とせず、オリジナルのTransformerアーキテクチャの変更は最小限である。
アーキテクチャの単純さにもかかわらず,提案手法は,マテリアルプロジェクトやJARVIS-DFTデータセット上での様々な特性回帰タスクに対して,最先端の手法よりも優れている。
関連論文リスト
- Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
結晶構造設計問題に対する2つの生成的アプローチを提案する。
1つは条件付き構造変化であり、最もエネルギー的に好ましい構造と全てのより安定なポリモルフィックの間のエネルギー差を利用する。
もう1つは条件付き構造の生成であり、最もエネルギー的に好ましい構造と、その全てのより安定したポリモルフィックの間のエネルギー差を利用する。
論文 参考訳(メタデータ) (2024-11-05T14:58:31Z) - CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction [0.0]
物質科学の文献では、結晶性物質がトポロジカルな構造を示すことはよく知られている。
本稿では,原子の密度ベクトル表現を生成するために,無相関結晶データを用いた教師なしフレームワーク,CrysAtomを提案する。
論文 参考訳(メタデータ) (2024-09-07T06:58:55Z) - Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
有望な性質を持つ新しい無機材料は、科学的にも工業的にも重要な課題である。
有望な性質を持つ新しい無機材料の発見は、科学的にも工業的にも重要な課題である。
そこで本研究では,トランスフォーマーアーキテクチャに基づくバックボーンを用いた,結晶構造の生成的逆設計のための新しいタイプの拡散モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-13T16:03:15Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
結晶構造は、3次元空間の正則格子に沿って繰り返される原始単位セル内の原子塩基によって特徴づけられる。
本稿では,各原子の格子に基づく表現を確立するために,単位細胞の周期パターンを利用する新しい手法を提案する。
結晶材料に特化して設計されたSE(3)トランスであるComFormerを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:06:37Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Neural Structure Fields with Application to Crystal Structure
Autoencoders [10.680545976155173]
本稿では,ニューラルネットワークを用いた結晶構造を表現するための高精度かつ実用的なアプローチとして,ニューラル構造体(NeSF)を提案する。
NeSFは空間分解能と計算複雑性のトレードオフを克服し、任意の結晶構造を表現することができる。
ペロブスカイト構造材料や銅酸化物超伝導体などの結晶構造を復元できる結晶構造のオートエンコーダを提案する。
論文 参考訳(メタデータ) (2022-12-08T16:41:41Z) - Atomic structure generation from reconstructing structural fingerprints [1.2128971613239876]
本稿では、原子中心対称性関数を表現として、条件付き変分オートエンコーダを生成モデルとして、エンドツーエンド構造生成手法を提案する。
我々は、概念実証として、サブナノメーターPtナノ粒子の新規で有効な原子構造を生成することに成功した。
論文 参考訳(メタデータ) (2022-07-27T00:42:59Z) - Geometric Transformer for End-to-End Molecule Properties Prediction [92.28929858529679]
分子特性予測のためのトランスフォーマーに基づくアーキテクチャを導入し,分子の形状を捉える。
分子幾何学の初期符号化による古典的な位置エンコーダと、学習されたゲート自己保持機構を改変する。
論文 参考訳(メタデータ) (2021-10-26T14:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。