論文の概要: Validation Methods for Energy Time Series Scenarios from Deep Generative
Models
- arxiv url: http://arxiv.org/abs/2110.14451v1
- Date: Wed, 27 Oct 2021 14:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-28 17:06:05.153467
- Title: Validation Methods for Energy Time Series Scenarios from Deep Generative
Models
- Title(参考訳): 深部生成モデルによるエネルギー時系列シナリオの検証手法
- Authors: Eike Cramer, Leonardo Rydin Gorj\~ao, Alexander Mitsos, Benjamin
Sch\"afer, Dirk Witthaut, Manuel Dahmen
- Abstract要約: 一般的なシナリオ生成アプローチでは、データ分散に関する前提なしにシナリオを生成するディープ生成モデル(DGM)を使用する。
エネルギーシナリオ生成文献における現在使われている検証手法の批判的評価を行う。
過去のデータと生成されたデータの両方に4つの検証手法を適用し、検証結果の解釈と、一般的な誤り、落とし穴、検証方法の限界について議論する。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design and operation of modern energy systems are heavily influenced by
time-dependent and uncertain parameters, e.g., renewable electricity
generation, load-demand, and electricity prices. These are typically
represented by a set of discrete realizations known as scenarios. A popular
scenario generation approach uses deep generative models (DGM) that allow
scenario generation without prior assumptions about the data distribution.
However, the validation of generated scenarios is difficult, and a
comprehensive discussion about appropriate validation methods is currently
lacking. To start this discussion, we provide a critical assessment of the
currently used validation methods in the energy scenario generation literature.
In particular, we assess validation methods based on probability density,
auto-correlation, and power spectral density. Furthermore, we propose using the
multifractal detrended fluctuation analysis (MFDFA) as an additional validation
method for non-trivial features like peaks, bursts, and plateaus. As
representative examples, we train generative adversarial networks (GANs),
Wasserstein GANs (WGANs), and variational autoencoders (VAEs) on two renewable
power generation time series (photovoltaic and wind from Germany in 2013 to
2015) and an intra-day electricity price time series form the European Energy
Exchange in 2017 to 2019. We apply the four validation methods to both the
historical and the generated data and discuss the interpretation of validation
results as well as common mistakes, pitfalls, and limitations of the validation
methods. Our assessment shows that no single method sufficiently characterizes
a scenario but ideally validation should include multiple methods and be
interpreted carefully in the context of scenarios over short time periods.
- Abstract(参考訳): 現代のエネルギーシステムの設計と運用は、時間依存的かつ不確実なパラメータ、例えば再生可能発電、負荷需要、電力価格に大きく影響されている。
これらは典型的にはシナリオとして知られる離散的な実現の集合で表される。
一般的なシナリオ生成アプローチでは、データ分散に関する前提なしにシナリオを生成するディープ生成モデル(DGM)を使用する。
しかし、生成されたシナリオの検証は困難であり、適切な検証方法に関する包括的な議論が現在不足している。
この議論を始めるために、エネルギーシナリオ生成文献で現在使われている検証手法について批判的な評価を行う。
特に,確率密度,自己相関,パワースペクトル密度に基づいて検証手法を評価する。
さらに,マルチフラクタル回帰変動解析(mfdfa)を,ピーク,バースト,高原などの非自明な特徴に対する付加的検証手法として用いることを提案する。
代表的な例として、再生可能発電時間(2013~2015年)と2017~2019年(2017~2019年)の欧州エネルギー取引所による日内電気価格時系列の2つの再生可能発電時間系列(2013~2015年)において、GAN(Generative Adversarial Network)、WGAN(Wasserstein GANs)、変分オートエンコーダ(VAEs)を訓練する。
過去のデータと生成されたデータの両方に4つの検証手法を適用し,検証結果の解釈と一般的な誤り,落とし穴,検証方法の制限について論じる。
一つの手法がシナリオを十分に特徴づけるわけではないが、理想的には複数の手法を含め、短時間でシナリオの文脈で慎重に解釈すべきである。
関連論文リスト
- GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
既存の偽造検出は、通常、単一のドメインでのトレーニングモデルのパラダイムに従う。
本稿では,複数の顔偽造検出データセットを共同で訓練した場合のディープフェイク検出モデルの一般化能力について詳しく検討する。
論文 参考訳(メタデータ) (2024-06-28T17:42:08Z) - Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift [28.73747033245012]
本稿では,コンテキスト駆動分布シフトの検出と適応のための普遍的キャリブレーション手法を提案する。
レジデンシャルベースCDS検出器(Residual-based CDS detector)またはリコンディショナー(Reconditionor)と呼ばれる新しいCDS検出器は、モデルの脆弱性をCDSに定量化する。
高いリコンディショナースコアは、重度の感受性を示し、したがってモデル適応を必要とする。
論文 参考訳(メタデータ) (2023-10-23T11:58:01Z) - Deep Generative Methods for Producing Forecast Trajectories in Power
Systems [0.0]
トランスポート・システム・オペレーター(TSO)は、将来の電力系統の機能をシミュレートするための分析を行う必要がある。
これらのシミュレーションは意思決定プロセスの入力として使用される。
論文 参考訳(メタデータ) (2023-09-26T14:43:01Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
テンポラリ・コンポラブル・ディフューザ(TCD)を用いた実効時間条件拡散モデルを提案する。
TCDは、相互作用シーケンスから時間情報を抽出し、時間条件で生成を明示的にガイドする。
提案手法は,従来のSOTAベースラインと比較して最高の性能を達成または一致させる。
論文 参考訳(メタデータ) (2023-06-08T02:12:26Z) - Masked Multi-Step Probabilistic Forecasting for Short-to-Mid-Term
Electricity Demand [7.544120398993689]
Masked Multi-Step Multi Probabilistic Forecasting (MMMPF)は、ニューラルネットワークモデルをトレーニングするための、新しく一般的なフレームワークである。
過去の時間的情報と未来に関する既知の情報を組み合わせて確率的予測を行う。
MMMPFは、不確実性を捉え、将来のグリッドの確率的計画を可能にするために、望ましい量子化物を生成することもできる。
論文 参考訳(メタデータ) (2023-02-14T04:09:03Z) - Exposing the Implicit Energy Networks behind Masked Language Models via
Metropolis--Hastings [57.133639209759615]
我々は,エネルギーに基づくシーケンスモデルとしてシーケンスを解釈し,訓練者から導出される2つのエネルギーパラメトリゼーションを提案する。
我々はメトロポリス・ハスティングス・モンテカルロのアルゴリズムに基づく抽出可能なエンフスキームを開発した。
提案手法の有効性を,これらのエネルギーモデルから得られた試料の品質を探索することによって検証する。
論文 参考訳(メタデータ) (2021-06-04T22:04:30Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
低次元空間における正規化フローを設定する線形主成分分析(PCA)に基づく次元還元フロー層を提案する。
当社は、2013年から2015年までのドイツにおけるPVおよび風力発電のデータと負荷需要に関する主成分フロー(PCF)を訓練しています。
論文 参考訳(メタデータ) (2021-04-21T08:42:54Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Generating Long-term Continuous Multi-type Generation Profiles using
Generative Adversarial Network [7.234117485816439]
新しい技術の採用により、電力系統のダイナミクスが大幅に向上した。
従来の長期計画研究はシステムのダイナミクスを反映できず、システム信頼性の欠陥を正確に予測できないことが多い。
本稿では,GAN(Generative Adversarial Networks)を用いたマルチジェネレーションタイプのプロファイル生成手法を提案する。
論文 参考訳(メタデータ) (2020-12-22T20:58:32Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
本稿では,隠れマルコフモデルの適応型オンライン学習に基づく確率的負荷予測手法を提案する。
本稿では,理論的保証のある学習予測手法を提案し,その性能を複数のシナリオで実験的に評価する。
その結果,提案手法は様々なシナリオにおいて既存手法の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-11-30T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。