論文の概要: Simple data balancing achieves competitive worst-group-accuracy
- arxiv url: http://arxiv.org/abs/2110.14503v1
- Date: Wed, 27 Oct 2021 15:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-28 14:01:40.047813
- Title: Simple data balancing achieves competitive worst-group-accuracy
- Title(参考訳): 単純なデータバランスが競合的最悪グループ精度を達成する
- Authors: Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, David
Lopez-Paz
- Abstract要約: 我々は、最先端の手法とクラスとグループの単純なバランスを比較し、データをサブサンプリングまたは再重み付けする。
以上の結果から,これらのデータバランシングベースラインが精度の高い状態を実現することが示唆された。
グループ情報へのアクセスは、モデル選択の目的にとって最も重要であり、トレーニング中はあまり重要ではない。
- 参考スコア(独自算出の注目度): 16.197105634385693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning classifiers that perform well across (known
or unknown) groups of data. After observing that common worst-group-accuracy
datasets suffer from substantial imbalances, we set out to compare
state-of-the-art methods to simple balancing of classes and groups by either
subsampling or reweighting data. Our results show that these data balancing
baselines achieve state-of-the-art-accuracy, while being faster to train and
requiring no additional hyper-parameters. In addition, we highlight that access
to group information is most critical for model selection purposes, and not so
much during training. All in all, our findings beg closer examination of
benchmarks and methods for research in worst-group-accuracy optimization.
- Abstract(参考訳): 本研究では,(既知の,あるいは未知の)データ群にまたがる学習分類器の問題点について検討する。
共通の最悪のグループ正確なデータセットがかなりの不均衡に苦しむのを観察した後、データをサブサンプリングしたり重み付けしたりすることで、最先端のメソッドと単純なクラスやグループのバランスを比較することにしました。
以上の結果から,これらのデータバランシングベースラインは,トレーニングが高速で,追加のハイパーパラメータを必要としない状態で,最先端を実現することが示された。
さらに,グループ情報へのアクセスはモデル選択の目的において最重要であり,トレーニング中はあまり重要ではないことも強調した。
全体として、最悪のグループ精度最適化のためのベンチマークと手法について、より詳しく検討した。
関連論文リスト
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Efficient Bias Mitigation Without Privileged Information [14.21628601482357]
経験的リスク最小化を通じてトレーニングされたディープニューラルネットワークは、グループ間での大きなパフォーマンス格差を示すことが多い。
この問題に対処しようとする既存のバイアス軽減手法は、トレーニングや検証のためにグループラベルに依存していることが多い。
本稿では,支援者モデルのトレーニング履歴全体を活用するフレームワークであるTAB(Targeted Augmentations for Bias Mitigation)を提案する。
また,TABはグループ情報やモデル選択を使わずにグループ性能を向上し,全体の精度を維持しながら既存手法よりも優れていたことを示す。
論文 参考訳(メタデータ) (2024-09-26T09:56:13Z) - The Group Robustness is in the Details: Revisiting Finetuning under Spurious Correlations [8.844894807922902]
現代の機械学習モデルは、素早い相関に過度に依存する傾向がある。
本稿では,最短群精度における微調整モデルの意外かつニュアンスな挙動を同定する。
以上の結果より,群強靭性を有する現代ファインチュードモデルの微妙な相互作用が以前よりも顕著に示された。
論文 参考訳(メタデータ) (2024-07-19T00:34:03Z) - Data Debiasing with Datamodels (D3M): Improving Subgroup Robustness via Data Selection [80.85902083005237]
データモデルによるデータデバイアス(Data Debiasing with Datamodels, D3M)は、マイノリティグループにおけるモデルの障害を駆動する特定のトレーニング例を分離し、削除するデバイアス(debiasing)アプローチである。
論文 参考訳(メタデータ) (2024-06-24T17:51:01Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
既存のデータ選択方法は、遅くて計算コストのかかるプロセスに悩まされる。
一方、データミキシングは、データポイントをまとめることで、データ選択の複雑さを低減する。
我々は,データ選択とデータ混合の両要素を組み合わせたオンラインデータ混合(ODM)の効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-05T00:42:35Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
本稿では,新しい2段階学習アルゴリズムであるBAMを提案する。
第1段階では、各トレーニングサンプルに対して学習可能な補助変数を導入することにより、バイアス増幅方式を用いてモデルを訓練する。
第2段階では、バイアス増幅モデルが誤分類したサンプルを重み付けし、その後、再重み付けされたデータセット上で同じモデルをトレーニングし続けます。
論文 参考訳(メタデータ) (2023-09-13T04:40:08Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - Simplicity Bias Leads to Amplified Performance Disparities [8.60453031364566]
SGDで訓練されたモデルは、単純さに偏りがあることを示し、多数派の学習を優先させる。
モデルは、単純なデータセットのクラスやグループを優先順位付けし、複雑なものを見つけることを犠牲にすることができる。
論文 参考訳(メタデータ) (2022-12-13T15:24:41Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。