論文の概要: Class-Conditional Distribution Balancing for Group Robust Classification
- arxiv url: http://arxiv.org/abs/2504.17314v2
- Date: Fri, 25 Apr 2025 02:50:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.281927
- Title: Class-Conditional Distribution Balancing for Group Robust Classification
- Title(参考訳): グループロバスト分類のためのクラスコンディション分散
- Authors: Miaoyun Zhao, Qiang Zhang, Chenrong Li,
- Abstract要約: 間違った理由からモデルが正しい予測に導かれるような豪華な相関関係は、堅牢な現実世界の一般化にとって重要な課題である。
クラス-条件分布における不均衡やミスマッチとして、突発的な相関を緩和することで、新しい視点を提供する。
本稿では,バイアスアノテーションと予測の両方を必要としない,シンプルで効果的な頑健な学習手法を提案する。
- 参考スコア(独自算出の注目度): 11.525201208566925
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
- Abstract(参考訳): 間違った理由からモデルが正しい予測に導かれるような豪華な相関関係は、堅牢な現実世界の一般化にとって重要な課題である。
既存の研究は、この問題をグループ不均衡と分類し、高価なバイアスアノテーションに大きく依存するグループバランスや最悪のグループ精度を最大化することで対処している。
妥協アプローチでは、大規模なデータを必要とする広範囲に事前訓練された基礎モデルを用いてバイアス情報を予測し、リソース制限されたレアドメインでは実行不可能となる。
これらの課題に対処するために、クラス-条件分布の不均衡やミスマッチとして素早い相関を考慮し、バイアスアノテーションと予測の両方の必要性を排除し、シンプルで効果的な頑健な学習法を提案する。
本手法は,スプリアス要因とラベル情報の相互情報を削減することを目的として,クラス-条件分散バランスを実現するために,サンプル再重み付け戦略を活用し,マイノリティグループとクラスを自動的に強調表示し,スプリアス相関を効果的に分解し,分類のための非偏りデータ分布を生成する。
大規模な実験と分析により、我々のアプローチは、バイアスの監督に依存する手法に対抗して、常に最先端のパフォーマンスを提供することを示した。
関連論文リスト
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
半教師付き学習(SSL)は、モデルが特定のクラスを不均等に好むという、一般的に確認バイアスを示す。
SSLのデバイアスドトレーニングのための統合フレームワークであるTaMatchを紹介します。
TaMatchは,様々な課題の画像分類タスクにおいて,既存の最先端手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-09-26T21:50:30Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本研究は,偏りと偏りの一致したサンプルを正確に予測することの重要性を示す。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
本稿では,学習理論と集中不等式を利用して従来のソリューションの欠点を克服する新しい枠組みを提案する。
本手法は, クラスごとに異なる不均衡度に効果的に適応できるため, より堅牢で信頼性の高い分類結果が得られる。
論文 参考訳(メタデータ) (2024-07-16T16:02:27Z) - Group Robust Classification Without Any Group Information [5.053622900542495]
この研究は、グループロバストネスに対する現在のバイアス非教師アプローチが、最適なパフォーマンスを達成するためにグループ情報に依存し続けていることを主張する。
バイアスラベルは依然として効果的なモデル選択に不可欠であり、現実のシナリオにおけるこれらの手法の実用性を制限する。
本稿では, 偏りのないモデルに対して, 完全にバイアスのない方法でトレーニングし, 妥当性を検証するための改訂手法を提案する。
論文 参考訳(メタデータ) (2023-10-28T01:29:18Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
本稿では,新しい2段階学習アルゴリズムであるBAMを提案する。
第1段階では、各トレーニングサンプルに対して学習可能な補助変数を導入することにより、バイアス増幅方式を用いてモデルを訓練する。
第2段階では、バイアス増幅モデルが誤分類したサンプルを重み付けし、その後、再重み付けされたデータセット上で同じモデルをトレーニングし続けます。
論文 参考訳(メタデータ) (2023-09-13T04:40:08Z) - Bias-inducing geometries: an exactly solvable data model with fairness implications [12.532003449620607]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
教師なし方式で,単純かつ効果的な脱バイアス手法を提案する。
特徴埋め込み空間上でクラスタリングを行い、クラスタリング結果を利用して疑似属性を識別する。
次に,非偏り表現を学習するために,クラスタベースの新しい重み付け手法を用いる。
論文 参考訳(メタデータ) (2021-08-06T05:20:46Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。