Fully device-independent quantum key distribution using synchronous
correlations
- URL: http://arxiv.org/abs/2110.14530v3
- Date: Thu, 10 Mar 2022 19:57:09 GMT
- Title: Fully device-independent quantum key distribution using synchronous
correlations
- Authors: Nishant Rodrigues, Brad Lackey
- Abstract summary: We derive a device-independent quantum key distribution protocol based on synchronous correlations and their Bell inequalities.
We close a "synchronicity" loophole by showing that an almost synchronous correlation inherits the self-testing property of the associated synchronous correlation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a device-independent quantum key distribution protocol based on
synchronous correlations and their Bell inequalities. This protocol offers
several advantages over other device-independent schemes including symmetry
between the two users and no need for preshared randomness. We close a
"synchronicity" loophole by showing that an almost synchronous correlation
inherits the self-testing property of the associated synchronous correlation.
We also pose a new security assumption that closes the "locality" (or
"causality") loophole: an unbounded adversary with even a small uncertainty
about the users' choice of measurement bases cannot produce any almost
synchronous correlation that approximately maximally violates a synchronous
Bell inequality.
Related papers
- Device-independent secure correlations in sequential quantum scenarios [44.99833362998488]
Device-independent quantum information is attracting significant attention, particularly for its applications in information security.
We propose a systematic approach to designing sequential quantum protocols for device-independent security.
We analytically prove that, with this systematic construction, the resulting ideal correlations are secure in the sense that they cannot be reproduced as a statistical mixture of other correlations.
arXiv Detail & Related papers (2025-03-18T16:45:20Z) - An even-parity precession protocol for detecting nonclassicality and entanglement [0.0]
We introduce an even-parity precession protocol that can detect nonclassicality of some quantum states.
Unlike other nonclassicality tests, simultaneous or sequential measurements are not required.
This work also closes a long-standing gap by showing the possibility of detecting the Greenberger--Horne--Zeilinger entanglement of an even number of qubits.
arXiv Detail & Related papers (2024-05-28T08:52:55Z) - Recurrent Complex-Weighted Autoencoders for Unsupervised Object Discovery [62.43562856605473]
We argue for the computational advantages of a recurrent architecture with complex-valued weights.
We propose a fully convolutional autoencoder, SynCx, that performs iterative constraint satisfaction.
arXiv Detail & Related papers (2024-05-27T15:47:03Z) - Federated Contextual Cascading Bandits with Asynchronous Communication
and Heterogeneous Users [95.77678166036561]
We propose a UCB-type algorithm with delicate communication protocols.
We give sub-linear regret bounds on par with those achieved in the synchronous framework.
Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.
arXiv Detail & Related papers (2024-02-26T05:31:14Z) - Unsupervised Concept Discovery Mitigates Spurious Correlations [45.48778210340187]
Models prone to spurious correlations in training data often produce brittle predictions and introduce unintended biases.
In this paper, we establish a novel connection between unsupervised object-centric learning and mitigation of spurious correlations.
We introduce CoBalT: a concept balancing technique that effectively mitigates spurious correlations without requiring human labeling of subgroups.
arXiv Detail & Related papers (2024-02-20T20:48:00Z) - Secure and robust randomness with sequential quantum measurements [0.0]
We prove a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users.
Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise.
This study advances understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - Device-independent quantum key distribution with arbitrarily small nonlocality [0.8192907805418583]
Device-independent quantum key distribution (DIQKD) allows two users to set up shared cryptographic key without the need to trust the quantum devices used.
Here we show that no such bound exists, giving schemes that achieve key with correlations arbitrarily close to the local set.
Some of our constructions achieve the maximum of 1 bit of key per pair of entangled qubits.
arXiv Detail & Related papers (2023-09-18T10:34:56Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Experimental certification of more than one bit of quantum randomness in
the two inputs and two outputs scenario [0.0]
We present an experimental realization of recent Bell-type operators designed to provide private random numbers that are secure against adversaries with quantum resources.
We use semi-definite programming to provide lower bounds on the generated randomness in terms of both min-entropy and von Neumann entropy.
Our results demonstrate the first experiment that certifies close to two bits of randomness from binary measurements of two parties.
arXiv Detail & Related papers (2023-03-13T20:42:53Z) - Hybrid no-signaling-quantum correlations [0.2085467441379275]
We introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term $textbfHNSQ$ in the multi-party Bell scenario.
Specifically, the set $textbfHNSQ$ is a super-quantum set of correlations derived from no-signaling assemblages.
In contrast to the usual no-signaling correlations, the new set allows for simple security of (one-sided)-device-independent applications against super-quantum adversaries.
arXiv Detail & Related papers (2021-07-14T17:40:42Z) - Synchronization and Non-Markovianity in open quantum systems [0.0]
We show that non-Markovianity is highly detrimental for the emergence of synchronization, for the latter can be delayed and hindered because of the presence of information backflow.
The results are obtained considering both a master equation approach and a collision model based on repeated interactions, which represents a very versatile tool to tailor the desired kind of environment.
arXiv Detail & Related papers (2020-08-07T18:00:01Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
We study three notions of uncertainty quantification -- calibration, confidence intervals and prediction sets -- for binary classification in the distribution-free setting.
We derive confidence intervals for binned probabilities for both fixed-width and uniform-mass binning.
As a consequence of our 'tripod' theorems, these confidence intervals for binned probabilities lead to distribution-free calibration.
arXiv Detail & Related papers (2020-06-18T14:17:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.