Experimental certification of more than one bit of quantum randomness in
the two inputs and two outputs scenario
- URL: http://arxiv.org/abs/2303.07460v1
- Date: Mon, 13 Mar 2023 20:42:53 GMT
- Title: Experimental certification of more than one bit of quantum randomness in
the two inputs and two outputs scenario
- Authors: Alban Jean-Marie Seguinard, Am\'elie Piveteau, Piotr Mironowicz,
Mohamed Bourennane
- Abstract summary: We present an experimental realization of recent Bell-type operators designed to provide private random numbers that are secure against adversaries with quantum resources.
We use semi-definite programming to provide lower bounds on the generated randomness in terms of both min-entropy and von Neumann entropy.
Our results demonstrate the first experiment that certifies close to two bits of randomness from binary measurements of two parties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the striking properties of quantum mechanics is the occurrence of the
Bell-type non-locality. They are a fundamental feature of the theory that
allows two parties that share an entangled quantum system to observe
correlations stronger than possible in classical physics. In addition to their
theoretical significance, non-local correlations have practical applications,
such as device-independent randomness generation, providing private
unpredictable numbers even when they are obtained using devices derived by an
untrusted vendor. Thus, determining the quantity of certifiable randomness that
can be produced using a specific set of non-local correlations is of
significant interest. In this paper, we present an experimental realization of
recent Bell-type operators designed to provide private random numbers that are
secure against adversaries with quantum resources. We use semi-definite
programming to provide lower bounds on the generated randomness in terms of
both min-entropy and von Neumann entropy in a device-independent scenario. We
compare experimental setups providing Bell violations close to the Tsirelson's
bound with lower rates of events, with setups having slightly worse levels of
violation but higher event rates. Our results demonstrate the first experiment
that certifies close to two bits of randomness from binary measurements of two
parties.
Related papers
- Distributed Quantum Hypothesis Testing under Zero-rate Communication Constraints [14.29947046463964]
We study a distributed binary hypothesis testing problem to infer a bipartite quantum state shared between two remote parties.
As our main contribution, we derive an efficiently computable single-letter formula for the Stein's exponent of this problem.
As a key tool for proving the converse direction of our results, we develop a quantum version of the blowing-up lemma.
arXiv Detail & Related papers (2024-10-11T16:03:10Z) - Randomness versus Nonlocality in Multi-input and Multi-output Quantum Scenario [6.898796252063761]
Device-independent randomness certification based on Bell nonlocality does not require any assumptions about the devices.
Our work unravels the internal connection between randomness and nonlocality, and effectively enhances the performance of tasks such as device-independent random number generation.
arXiv Detail & Related papers (2024-08-08T16:25:23Z) - Randomness Certification from Multipartite Quantum Steering for
Arbitrary Dimensional Systems [18.328936600754016]
We show that the distributed structure of several parties leads to additional protection against possible attacks by an eavesdropper.
We prove that the necessary and sufficient resource for quantum randomness in this scenario is multipartite quantum steering.
arXiv Detail & Related papers (2023-07-05T06:58:41Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Randomness-free Test of Non-classicality: a Proof of Concept [0.0]
Existing schemes to certify such non-classical resources in a device-independent manner require seed randomness.
We propose and experimentally implement a semi-device independent certification technique for both quantum correlations and non-projective measurements without seed randomness.
arXiv Detail & Related papers (2023-03-13T10:44:16Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Entropy certification of a realistic QRNG based on single-particle
entanglement [0.0]
In single-particle entanglement (SPE) two degrees of freedom of a single particle are entangled.
We show how it is possible to provide a semi-device independent certification of realistic quantum random number generators based on Bell inequality violation by SPE states of photons.
arXiv Detail & Related papers (2021-04-13T10:53:10Z) - Using Randomness to decide among Locality, Realism and Ergodicity [91.3755431537592]
An experiment is proposed to find out, or at least to get an indication about, which one is false.
The results of such experiment would be important not only to the foundations of Quantum Mechanics.
arXiv Detail & Related papers (2020-01-06T19:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.