Designing Machine Learning Surrogates using Outputs of Molecular
Dynamics Simulations as Soft Labels
- URL: http://arxiv.org/abs/2110.14714v1
- Date: Wed, 27 Oct 2021 19:00:40 GMT
- Title: Designing Machine Learning Surrogates using Outputs of Molecular
Dynamics Simulations as Soft Labels
- Authors: J.C.S. Kadupitiya, Nasim Anousheh, Vikram Jadhao
- Abstract summary: We show that statistical uncertainties associated with the outputs of molecular dynamics simulations can be utilized to train artificial neural networks.
We design soft labels for the simulation outputs by incorporating the uncertainties in the estimated average output quantities.
The approach is illustrated with the design of a surrogate for molecular dynamics simulations of confined electrolytes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics simulations are powerful tools to extract the microscopic
mechanisms characterizing the properties of soft materials. We recently
introduced machine learning surrogates for molecular dynamics simulations of
soft materials and demonstrated that artificial neural network based regression
models can successfully predict the relationships between the input material
attributes and the simulation outputs. Here, we show that statistical
uncertainties associated with the outputs of molecular dynamics simulations can
be utilized to train artificial neural networks and design machine learning
surrogates with higher accuracy and generalizability. We design soft labels for
the simulation outputs by incorporating the uncertainties in the estimated
average output quantities, and introduce a modified loss function that
leverages these soft labels during training to significantly reduce the
surrogate prediction error for input systems in the unseen test data. The
approach is illustrated with the design of a surrogate for molecular dynamics
simulations of confined electrolytes to predict the complex relationship
between the input electrolyte attributes and the output ionic structure. The
surrogate predictions for the ionic density profiles show excellent agreement
with the ground truth results produced using molecular dynamics simulations.
The high accuracy and small inference times associated with the surrogate
predictions provide quick access to quantities derived using the number density
profiles and facilitate rapid sensitivity analysis.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Electronic excited states from physically-constrained machine learning [0.0]
We present an integrated modeling approach, in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation.
The resulting model can make predictions for molecules that are much larger and more complex than those that it is trained on.
arXiv Detail & Related papers (2023-11-01T20:49:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
We present a more comprehensive set of benchmarking tests for evaluating the transferability of machine-learned force fields.
We use a graph neural network (GNN)-based force field coupled with the OpenMM package to carry out MD simulations for Argon.
Our results show that the model can accurately capture the behavior of the solid phase only when the configurations from the solid phase are included in the training dataset.
arXiv Detail & Related papers (2023-01-10T00:25:48Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Prediction of transport property via machine learning molecular
movements [1.0554048699217666]
We present a simple supervised machine learning method to predict the transport properties of materials.
This method was applied to predict the viscosity of lubricant molecules in confinement with shear flow.
We revealed two types of molecular mechanisms that contribute to low viscosity.
arXiv Detail & Related papers (2022-03-07T02:28:07Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
arXiv Detail & Related papers (2020-10-28T12:43:46Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.