Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation
- URL: http://arxiv.org/abs/2010.16260v1
- Date: Wed, 28 Oct 2020 12:43:46 GMT
- Title: Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation
- Authors: Emma Lejeune and Bill Zhao
- Abstract summary: We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From the nano-scale to the macro-scale, biological tissue is spatially
heterogeneous. Even when tissue behavior is well understood, the exact subject
specific spatial distribution of material properties is often unknown. And,
when developing computational models of biological tissue, it is usually
prohibitively computationally expensive to simulate every plausible spatial
distribution of material properties for each problem of interest. Therefore,
one of the major challenges in developing accurate computational models of
biological tissue is capturing the potential effects of this spatial
heterogeneity. Recently, machine learning based metamodels have gained
popularity as a computationally tractable way to overcome this problem because
they can make predictions based on a limited number of direct simulation runs.
These metamodels are promising, but they often still require a high number of
direct simulations to achieve an acceptable performance. Here we show that
transfer learning, a strategy where knowledge gained while solving one problem
is transferred to solving a different but related problem, can help overcome
this limitation. Critically, transfer learning can be used to leverage both
low-fidelity simulation data and simulation data that is the outcome of solving
a different but related mechanical problem. In this paper, we extend Mechanical
MNIST, our open source benchmark dataset of heterogeneous material undergoing
large deformation, to include a selection of low-fidelity simulation results
that require 2-4 orders of magnitude less CPU time to run. Then, we show that
transferring the knowledge stored in metamodels trained on these low-fidelity
simulation results can vastly improve the performance of metamodels used to
predict the results of high-fidelity simulations.
Related papers
- A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
We introduce an alternative surrogate modeling strategy that allows for keeping the multiscale nature of the problem.
We achieve this by predicting full-field microscopic strains using a graph neural network (GNN) while retaining the microscopic material model.
We demonstrate for several challenging scenarios that the surrogate can predict complex macroscopic stress-strain paths.
arXiv Detail & Related papers (2024-02-20T15:54:24Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
We construct a neural likelihood approximation that can be trained using unconditional simulation of the underlying model.
We demonstrate our method by performing inference on a number of ecological and epidemiological models.
arXiv Detail & Related papers (2023-10-19T07:51:39Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
We propose a deep learning method for predicting displacement fields of soft tissues with viselastic properties.
The proposed method achieves a better accuracy over the conventional CNN models.
It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality.
arXiv Detail & Related papers (2023-01-11T18:17:10Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Enhancing Mechanical Metamodels with a Generative Model-Based Augmented
Training Dataset [0.7734726150561089]
Microstructural patterns, which play a major role in defining the mechanical behavior of tissues, are difficult to simulate.
In this work, we investigate the efficacy of machine learning-based generative models as a tool for augmenting limited input pattern datasets.
We have created an open access dataset of Finite Element Analysis simulations based on Cahn-Hilliard patterns.
arXiv Detail & Related papers (2022-03-08T16:15:54Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.