BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation
- URL: http://arxiv.org/abs/2110.14775v1
- Date: Wed, 27 Oct 2021 21:12:27 GMT
- Title: BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation
- Authors: Yanda Meng, Hongrun Zhang, Dongxu Gao, Yitian Zhao, Xiaoyun Yang,
Xuesheng Qian, Xiaowei Huang, Yalin Zheng
- Abstract summary: We apply graph convolution into the segmentation task and propose an improved textitLaplacian.
Our method outperforms the state-of-the-art approaches on the segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images.
- Score: 21.912509900254364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Segmentation is an essential operation of image processing. The convolution
operation suffers from a limited receptive field, while global modelling is
fundamental to segmentation tasks. In this paper, we apply graph convolution
into the segmentation task and propose an improved \textit{Laplacian}.
Different from existing methods, our \textit{Laplacian} is data-dependent, and
we introduce two attention diagonal matrices to learn a better vertex
relationship. In addition, it takes advantage of both region and boundary
information when performing graph-based information propagation. Specifically,
we model and reason about the boundary-aware region-wise correlations of
different classes through learning graph representations, which is capable of
manipulating long range semantic reasoning across various regions with the
spatial enhancement along the object's boundary. Our model is well-suited to
obtain global semantic region information while also accommodates local spatial
boundary characteristics simultaneously. Experiments on two types of
challenging datasets demonstrate that our method outperforms the
state-of-the-art approaches on the segmentation of polyps in colonoscopy images
and of the optic disc and optic cup in colour fundus images.
Related papers
- Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Geometrically Aligned Transfer Encoder for Inductive Transfer in
Regression Tasks [5.038936775643437]
We propose a novel transfer technique based on differential geometry, namely the Geometrically Aligned Transfer (GATE)
We find a proper diffeomorphism between pairs of tasks to ensure that every arbitrary point maps to a locally flat coordinate in the overlapping region, allowing the transfer of knowledge from the source to the target data.
GATE outperforms conventional methods and exhibits stable behavior in both the latent space and extrapolation regions for various molecular graph datasets.
arXiv Detail & Related papers (2023-10-10T07:11:25Z) - Joint Dense-Point Representation for Contour-Aware Graph Segmentation [2.138299283227551]
We present a novel methodology that combines graph and dense segmentation techniques by jointly learning both point and pixel contour representations.
This addresses deficiencies in typical graph segmentation methods where misaligned objectives restrict the network from learning discriminative and contour features.
Our approach is validated on several Chest X-ray datasets, demonstrating clear improvements in segmentation stability and accuracy.
arXiv Detail & Related papers (2023-06-21T10:07:17Z) - Attention-based fusion of semantic boundary and non-boundary information
to improve semantic segmentation [9.518010235273783]
This paper introduces a method for image semantic segmentation grounded on a novel fusion scheme.
The main goal of our proposal is to explore object boundary information to improve the overall segmentation performance.
Our proposed model achieved the best mIoU on the CityScapes, CamVid, and Pascal Context data sets, and the second best on Mapillary Vistas.
arXiv Detail & Related papers (2021-08-05T20:46:53Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
We propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adrial Regularization (InMARS)
Inspired by human perception which parses a scene into perceptual groups, our proposed approach first partitions an input image into meaningful regions (also known as superpixels)
Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes.
Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets.
arXiv Detail & Related papers (2021-07-01T18:36:27Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area.
Recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations are not highly effective on the videos.
This paper proposes an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions.
arXiv Detail & Related papers (2020-07-31T03:48:41Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
We apply graph convolution into the semantic segmentation task and propose an improved Laplacian.
The graph reasoning is directly performed in the original feature space organized as a spatial pyramid.
We achieve comparable performance with advantages in computational and memory overhead.
arXiv Detail & Related papers (2020-03-23T12:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.