論文の概要: GPU based GMM segmentation of kinect data
- arxiv url: http://arxiv.org/abs/2110.14934v1
- Date: Thu, 28 Oct 2021 08:05:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-30 05:11:10.490877
- Title: GPU based GMM segmentation of kinect data
- Title(参考訳): gpuを用いたkinectデータのgmmセグメンテーション
- Authors: Abdenour Amamra, Tarek Mouats, Nabil Aouf
- Abstract要約: 本稿では,ガウス混合モデル(GMM)を用いたRGBDデータの背景/地上分割のための新しい手法を提案する。
まず背景画像から色と深度を別々に抽出することから始める。
両方のストリームから生じる前景は、より正確な検出のために融合される。
- 参考スコア(独自算出の注目度): 3.964047152162558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach for background/foreground segmentation
of RGBD data with the Gaussian Mixture Models (GMM). We first start by the
background subtraction from the colour and depth images separately. The
foregrounds resulting from both streams are then fused for a more accurate
detection. Our segmentation solution is implemented on the GPU. Thus, it works
at the full frame rate of the sensor (30fps). Test results show its robustness
against illumination change, shadows and reflections.
- Abstract(参考訳): 本稿では,ガウス混合モデル(gmm)を用いたrgbdデータのバックグラウンド/フォアグラウンドセグメンテーションに関する新しいアプローチを提案する。
まず背景画像から色と深度を別々に抽出することから始める。
両方のストリームから生じる前景は、より正確な検出のために融合される。
セグメンテーションソリューションはGPU上に実装されています。
これにより、センサーの全フレームレート(30fps)で動作します。
実験の結果,照明変化,影,反射に対するロバスト性が示された。
関連論文リスト
- Detect Any Shadow: Segment Anything for Video Shadow Detection [105.19693622157462]
影を検出するためのセグメンテーションモデル(SAM)を微調整するフレームワークであるShadowSAMを提案する。
長時間の注意機構と組み合わせることで、効率的な映像陰影検出が可能となる。
提案手法は,従来のビデオシャドウ検出手法と比較して高速な推論速度を示す。
論文 参考訳(メタデータ) (2023-05-26T07:39:10Z) - Dense RGB SLAM with Neural Implicit Maps [34.37572307973734]
ニューラル暗黙マップ表現を用いた高密度RGB SLAM法を提案する。
提案手法は,映像フレームの描画と入力を一致させることで,カメラの動きとニューラル暗黙マップを同時に解く。
提案手法は,従来の手法よりも良好な結果が得られ,最近のRGB-D SLAM法を超えている。
論文 参考訳(メタデータ) (2023-01-21T09:54:07Z) - A Combined Approach Toward Consistent Reconstructions of Indoor Spaces
Based on 6D RGB-D Odometry and KinectFusion [7.503338065129185]
キーポイント抽出により連続したRGB-Dフレーム間の相対的なカメラポーズを求める6次元RGB-Dオドメトリー手法を提案する。
推定されたポーズを、フレーム間相対的なポーズを微調整するKinectFusionアルゴリズムに入力する。
提案アルゴリズムは,ポストプロセッシングのステップを使わずに,利用可能なポリゴンメッシュ(3次元仮想世界を作成するのに非常に適している)を出力する。
論文 参考訳(メタデータ) (2022-12-25T22:52:25Z) - VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for
Analysis-by-Synthesis [62.47221232706105]
本稿では,ガウス再構成カーネルをボリュームプリミティブとして利用するVoGEを提案する。
本稿では,VoGEを用いて効率よくレンダリングを行うために,体積密度集約と粗大な描画戦略に関する近似クローズフォーム解を提案する。
VoGEは、オブジェクトポーズ推定、形状/テクスチャフィッティング、推論など、様々な視覚タスクに適用された場合、SoTAより優れている。
論文 参考訳(メタデータ) (2022-05-30T19:52:11Z) - Scale Invariant Semantic Segmentation with RGB-D Fusion [12.650574326251023]
RGB-D画像を用いたスケール不変セマンティックセグメンテーションのためのニューラルネットワークアーキテクチャを提案する。
画素単位のセマンティックセグメンテーションのためのRGBデータに深度情報を組み込んで,屋外シーンにおける異なるスケールオブジェクトに対処する。
我々のモデルはコンパクトであり、他のRGBモデルにも容易に適用できる。
論文 参考訳(メタデータ) (2022-04-10T12:54:27Z) - Visual Odometry for RGB-D Cameras [3.655021726150368]
本稿では,静止環境を走行する移動RGB-Dカメラの高速かつ高精度な計測手法を開発した。
提案アルゴリズムは,SURF を特徴抽出器として,RANSAC を用いて結果をフィルタリングし,最小平均角を使って連続するビデオフレーム間の6つのパラメータの剛性変換を推定する。
論文 参考訳(メタデータ) (2022-03-28T21:49:12Z) - Shot boundary detection method based on a new extensive dataset and
mixed features [68.8204255655161]
ビデオにおけるショット境界検出は、ビデオデータ処理の重要な段階の1つである。
カラーヒストグラムや物体境界などの映像特徴に基づくショット境界検出法が提案されている。
論文 参考訳(メタデータ) (2021-09-02T16:19:24Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
RGBD画像における接地参照表現は新たな分野である。
本稿では,参照する物体が閉塞により部分的にスキャンされる場合が多い単視点rgbd画像における3次元視覚グランド化の新たな課題を提案する。
提案手法はまず,RGBD画像内の関連領域をローカライズするヒートマップを生成するために,下層の言語と視覚的特徴を融合させる。
次に、ヒートマップに基づく適応的特徴学習を行い、他のビジオ言語融合とオブジェクトレベルのマッチングを行い、最後に参照したオブジェクトを接地する。
論文 参考訳(メタデータ) (2021-03-14T11:18:50Z) - Real-time RGBD-based Extended Body Pose Estimation [57.61868412206493]
3DヒトポーズのリアルタイムRGBDに基づく推定システムを提案する。
パラメトリック3次元変形可能なヒューマンメッシュモデル(SMPL-X)を表現として使用する。
身体のポーズと表情パラメータの推定子を訓練する。
論文 参考訳(メタデータ) (2021-03-05T13:37:50Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Foreground object segmentation in RGB-D data implemented on GPU [1.2891210250935146]
本稿では,RGB-Dデータサポートのための2つの前景オブジェクトセグメンテーションアルゴリズムのGPU実装について述べる。
色(RGB)と深度(D)データの同時使用により、セグメンテーションの精度が向上する。
このシステムは、IntelのRealSense D415とD435の2つのRGB-Dセンサーで動作するように適合している。
論文 参考訳(メタデータ) (2020-02-01T17:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。