論文の概要: Using Time-Series Privileged Information for Provably Efficient Learning
of Prediction Models
- arxiv url: http://arxiv.org/abs/2110.14993v1
- Date: Thu, 28 Oct 2021 10:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 14:15:16.950035
- Title: Using Time-Series Privileged Information for Provably Efficient Learning
of Prediction Models
- Title(参考訳): 時系列特権情報を用いた予測モデルの効率的学習
- Authors: Rickard Karlsson, Martin Willbo, Zeshan Hussain, Rahul G. Krishnan,
David Sontag, Fredrik D. Johansson
- Abstract要約: 本研究では,学習中に特権情報を利用する教師付きモデルを用いて,今後の成果を予測する。
特権情報は、予測の基準時間と将来の結果の間に観察される時系列のサンプルを含む。
我々のアプローチは、特にデータが不足している場合に、古典的な学習よりも好まれることを示す。
- 参考スコア(独自算出の注目度): 6.7015527471908625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study prediction of future outcomes with supervised models that use
privileged information during learning. The privileged information comprises
samples of time series observed between the baseline time of prediction and the
future outcome; this information is only available at training time which
differs from the traditional supervised learning. Our question is when using
this privileged data leads to more sample-efficient learning of models that use
only baseline data for predictions at test time. We give an algorithm for this
setting and prove that when the time series are drawn from a non-stationary
Gaussian-linear dynamical system of fixed horizon, learning with privileged
information is more efficient than learning without it. On synthetic data, we
test the limits of our algorithm and theory, both when our assumptions hold and
when they are violated. On three diverse real-world datasets, we show that our
approach is generally preferable to classical learning, particularly when data
is scarce. Finally, we relate our estimator to a distillation approach both
theoretically and empirically.
- Abstract(参考訳): 学習中に特権情報を利用する教師付きモデルを用いて将来の成果を予測する。
特権情報は、予測の基準時間と将来の結果との間に観察される時系列のサンプルを含み、この情報は従来の教師付き学習とは異なるトレーニング時間でのみ利用可能である。
私たちの疑問は、この特権データを使用すると、テスト時の予測にベースラインデータのみを使用するモデルのサンプル効率が向上する場合です。
この設定のアルゴリズムを与え,固定地平線の非定常ガウス線形力学系から時系列を引いた場合,特権情報を用いた学習は,それなしで学習するよりも効率的であることを示す。
合成データでは、仮定が成立する時と違反する時の両方において、アルゴリズムと理論の限界をテストする。
実世界の3つの多様なデータセットにおいて、我々のアプローチは古典的な学習、特にデータが不足している場合、一般的に好まれることを示す。
最後に, 理論的にも経験的にも, 蒸留法と推定器を関連づける。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Contrastive Difference Predictive Coding [79.74052624853303]
本研究では、時系列データの断片を縫合して、将来の事象の予測を学習するために必要なデータの量を減少させるコントラッシブ予測符号化の時間差版を導入する。
目的条件付きRLの非政治アルゴリズムを導出するために,この表現学習手法を適用した。
論文 参考訳(メタデータ) (2023-10-31T03:16:32Z) - TimeGPT-1 [1.2289361708127877]
我々は、時系列の最初の基礎モデルであるTimeGPTを導入し、トレーニング中に見えない多様なデータセットの正確な予測を生成する。
我々は,既存の統計,機械学習,深層学習に対して事前学習したモデルを評価し,TGPTゼロショット推論が性能,効率,単純さに優れていることを示す。
論文 参考訳(メタデータ) (2023-10-05T15:14:00Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Mixed moving average field guided learning for spatio-temporal data [0.0]
我々は,新しいベイズ時間埋め込みと理論誘導型機械学習アプローチを定義し,アンサンブル予測を行う。
リプシッツ予測器を用いて、バッチ学習環境における固定時間および任意の時間PACを決定する。
次に、線形予測器とOrnstein-Uhlenbeckプロセスからシミュレーションしたデータセットを用いて学習手法の性能を検証した。
論文 参考訳(メタデータ) (2023-01-02T16:11:05Z) - Machine Learning Algorithms for Time Series Analysis and Forecasting [0.0]
時系列データは、販売記録から患者の健康進化指標まで、あらゆる場所で使用されている。
様々な統計的および深層学習モデル、特にARIMA、Prophet、LSTMが検討されている。
我々の研究は、誰でも予測プロセスの理解を深め、現在使われている様々な芸術モデルの状態を識別するために利用できる。
論文 参考訳(メタデータ) (2022-11-25T22:12:03Z) - Efficient learning of nonlinear prediction models with time-series
privileged information [11.679648862014655]
線形ガウス力学系において、中間時系列データにアクセス可能なLuPI学習者は、偏りのない古典的学習者よりも決して悪くはないことを示す。
このマップが未知の場合のランダムな特徴と表現学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T05:56:36Z) - Knowledge-driven Active Learning [70.37119719069499]
アクティブな学習戦略は、ディープラーニングモデルをトレーニングするために必要なラベル付きデータの量を最小限にすることを目的としている。
ほとんどの積極的な戦略は不確実なサンプルの選択に基づいており、しばしば決定境界に近いサンプルに制限される。
本稿では、一般的なドメイン知識を考慮し、エキスパートでないユーザがより少ないサンプルでモデルを訓練できるようにする。
論文 参考訳(メタデータ) (2021-10-15T06:11:53Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。