論文の概要: Prediction-Oriented Subsampling from Data Streams
- arxiv url: http://arxiv.org/abs/2508.03868v1
- Date: Tue, 05 Aug 2025 19:30:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.43099
- Title: Prediction-Oriented Subsampling from Data Streams
- Title(参考訳): データストリームからの予測指向サブサンプリング
- Authors: Benedetta Lavinia Mussati, Freddie Bickford Smith, Tom Rainforth, Stephen Roberts,
- Abstract要約: データストリームからモデルを学ぶ上で重要な課題は、計算コストを管理しつつ、関連する情報をキャプチャすることだ。
関心の下流予測における不確実性を低減することに焦点を当てた情報理論手法を提案する。
- 参考スコア(独自算出の注目度): 17.21293400236517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data is often generated in streams, with new observations arriving over time. A key challenge for learning models from data streams is capturing relevant information while keeping computational costs manageable. We explore intelligent data subsampling for offline learning, and argue for an information-theoretic method centred on reducing uncertainty in downstream predictions of interest. Empirically, we demonstrate that this prediction-oriented approach performs better than a previously proposed information-theoretic technique on two widely studied problems. At the same time, we highlight that reliably achieving strong performance in practice requires careful model design.
- Abstract(参考訳): データはストリームで生成されることが多く、新しい観測が時間とともにやってくる。
データストリームからモデルを学ぶ上で重要な課題は、計算コストを管理しつつ、関連する情報をキャプチャすることだ。
オフライン学習のためのインテリジェントなデータサブサンプリングについて検討し、関心の下流予測の不確実性を低減することに焦点を当てた情報理論手法を議論する。
実験により、この予測指向アプローチは、2つの広く研究されている問題に対して、以前に提案された情報理論手法よりも優れていることを示す。
同時に、我々は、確実に強力なパフォーマンスを実現するには、慎重にモデル設計が必要であることを強調した。
関連論文リスト
- Robust Molecular Property Prediction via Densifying Scarce Labeled Data [51.55434084913129]
薬物発見において、研究を進める上で最も重要な化合物は、しばしば訓練セットを越えている。
本稿では,未ラベルデータを利用したメタラーニングに基づく新しい手法を提案する。
実世界のデータセットに挑戦する上で、大きなパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-06-13T15:27:40Z) - StreamEnsemble: Predictive Queries over Spatiotemporal Streaming Data [0.8437187555622164]
本稿では,時間的(ST)データ分布上の予測クエリに対する新しいアプローチであるStreamEnemblesを提案する。
実験により,本手法は従来のアンサンブル手法や単一モデル手法よりも精度と時間で優れていたことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-30T23:50:16Z) - DRoP: Distributionally Robust Data Pruning [11.930434318557156]
我々は、訓練されたモデルの分類バイアスにデータプルーニングが与える影響について、最初の系統的研究を行う。
そこで我々はDRoPを提案する。DRoPは,標準的なコンピュータビジョンベンチマークにおいて,その性能を実証的に実証し,分散的に頑健な手法である。
論文 参考訳(メタデータ) (2024-04-08T14:55:35Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
C$2$TSDという条件拡散フレームワークを導入する。
実世界の3つのデータセットに対する我々の実験は、最先端のベースラインと比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2024-02-18T11:59:04Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Using Time-Series Privileged Information for Provably Efficient Learning
of Prediction Models [6.7015527471908625]
本研究では,学習中に特権情報を利用する教師付きモデルを用いて,今後の成果を予測する。
特権情報は、予測の基準時間と将来の結果の間に観察される時系列のサンプルを含む。
我々のアプローチは、特にデータが不足している場合に、古典的な学習よりも好まれることを示す。
論文 参考訳(メタデータ) (2021-10-28T10:07:29Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Focus of Attention Improves Information Transfer in Visual Features [80.22965663534556]
本稿では,真のオンライン環境下での視覚情報伝達のための教師なし学習に焦点を当てた。
エントロピー項の計算は、エントロピー項のオンライン推定を行う時間的プロセスによって行われる。
入力確率分布をよりよく構成するために,人間のような注目モデルを用いる。
論文 参考訳(メタデータ) (2020-06-16T15:07:25Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
金融時系列予測のための表現学習フレームワークを提案する。
本稿では、まず時系列データからコンパクトな表現を学習し、次に学習した表現を用いて、時系列の動きを予測するためのより単純なモデルを訓練する。
論文 参考訳(メタデータ) (2020-02-18T15:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。