論文の概要: Deep Calibration of Interest Rates Model
- arxiv url: http://arxiv.org/abs/2110.15133v2
- Date: Mon, 30 Sep 2024 09:57:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:40.871615
- Title: Deep Calibration of Interest Rates Model
- Title(参考訳): 利子率モデルの深い校正
- Authors: Mohamed Ben Alaya, Ahmed Kebaier, Djibril Sarr,
- Abstract要約: ディープラーニングの普及にもかかわらず、CIRやガウス家のような古典的なレートモデルはまだ広く使われている。
本稿では,ニューラルネットワークを用いたG2++モデルの5つのパラメータの校正を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: For any financial institution, it is essential to understand the behavior of interest rates. Despite the growing use of Deep Learning, for many reasons (expertise, ease of use, etc.), classic rate models such as CIR and the Gaussian family are still widely used. In this paper, we propose to calibrate the five parameters of the G2++ model using Neural Networks. Our first model is a Fully Connected Neural Network and is trained on covariances and correlations of Zero-Coupon and Forward rates. We show that covariances are more suited to the problem than correlations due to the effects of the unfeasible backpropagation phenomenon, which we analyze in this paper. The second model is a Convolutional Neural Network trained on Zero-Coupon rates with no further transformation. Our numerical tests show that our calibration based on deep learning outperforms the classic calibration method used as a benchmark. Additionally, our Deep Calibration approach is designed to be systematic. To illustrate this feature, we applied it to calibrate the popular CIR intensity model.
- Abstract(参考訳): あらゆる金融機関にとって、金利の振る舞いを理解することが不可欠である。
ディープラーニングの普及にもかかわらず、多くの理由(専門知識、使いやすさなど)から、CIRやガウス家といった古典的なレートモデルが広く使われている。
本稿では,ニューラルネットワークを用いたG2++モデルの5つのパラメータの校正を提案する。
我々の最初のモデルは完全連結ニューラルネットワークであり、ゼロクーポンとフォワード率の共分散と相関について訓練されている。
本論文では, 共分散は, 逆伝播現象の影響により, 相関よりも問題に適していることを示す。
2つ目のモデルは、ゼロクーポンレートでトレーニングされた畳み込みニューラルネットワークで、それ以上の変換はない。
数値実験の結果,ディープラーニングに基づくキャリブレーションは,従来のキャリブレーション手法よりも優れていることがわかった。
さらに、Deep Calibrationアプローチは体系的に設計されています。
この特徴を説明するために、一般的なCIR強度モデルの校正にこれを適用した。
関連論文リスト
- From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
ヘミスフィアニューラルネットワーク(HNN)は、可能時の主指標に基づく積極的なボラティリティ予測と、必要時の過去の予測誤差の大きさに基づく反応性ボラティリティ予測を提供する。
論文 参考訳(メタデータ) (2023-11-27T21:37:50Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
我々はニューラルクランプ法と呼ばれる新しい後処理キャリブレーション法を提案する。
実験の結果,Neural Clampingは最先端の処理後のキャリブレーション法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-23T14:18:39Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
予測キャリブレーション誤差(ECE)を予測信頼度と改善度に分解する。
正規化に基づくキャリブレーションは、モデルの信頼性を損なうことのみに焦点を当てる。
ラベルの平滑化やミキサアップなど,多くのキャリブレーション手法により,DNNの精度を低下させることで,DNNの有用性を低下させることがわかった。
論文 参考訳(メタデータ) (2021-06-17T11:04:14Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
in the Infinite-Width Limit [47.324627920761685]
我々は、無限大のNNのアンサンブルに先立って関数空間をガウス過程として特徴づける最近の理論的進歩を用いる。
これにより、関数空間上の暗黙の前のNNについて、よりよく理解できます。
また,従来のNNGPを用いた分類手法の校正について検討した。
論文 参考訳(メタデータ) (2020-10-14T18:41:54Z) - Post-hoc Calibration of Neural Networks by g-Layers [51.42640515410253]
近年、ニューラルネットワークの校正に関する研究が急増している。
負ログライクリーフ(NLL)の最小化は、グローバルな最適化が達成されれば、トレーニングセット上の校正ネットワークにつながることが知られている。
基本ネットワーク (f$) が NLL のグローバルな最適化に繋がらず,追加レイヤ (g$) を追加し,パラメータを$g$ 1 に最適化することで NLL を最小化することで,キャリブレーションネットワークが得られることを示す。
論文 参考訳(メタデータ) (2020-06-23T07:55:10Z) - On Calibration of Mixup Training for Deep Neural Networks [1.6242924916178283]
我々は、Mixupが必ずしも校正を改善していないという実証的な証拠を論じ、提示する。
我々の損失はベイズ決定理論にインスパイアされ、確率的モデリングの損失を設計するための新しいトレーニングフレームワークが導入された。
キャリブレーション性能を一貫した改善を施した最先端の精度を提供する。
論文 参考訳(メタデータ) (2020-03-22T16:54:31Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。