論文の概要: From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks
- arxiv url: http://arxiv.org/abs/2311.16333v2
- Date: Tue, 23 Apr 2024 15:53:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:35:42.475524
- Title: From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks
- Title(参考訳): 半球ニューラルネットを用いた反応性からアクティブなボラティリティモデリングへ
- Authors: Philippe Goulet Coulombe, Mikael Frenette, Karin Klieber,
- Abstract要約: 我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
ヘミスフィアニューラルネットワーク(HNN)は、可能時の主指標に基づく積極的なボラティリティ予測と、必要時の過去の予測誤差の大きさに基づく反応性ボラティリティ予測を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres. Our architecture features several key ingredients making MLE work in this context. First, the hemispheres share a common core at the entrance of the network which accommodates for various forms of time variation in the error variance. Second, we introduce a volatility emphasis constraint that breaks mean/variance indeterminacy in this class of overparametrized nonlinear models. Third, we conduct a blocked out-of-bag reality check to curb overfitting in both conditional moments. Fourth, the algorithm utilizes standard deep learning software and thus handles large data sets - both computationally and statistically. Ergo, our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must. We evaluate point and density forecasts with an extensive out-of-sample experiment and benchmark against a suite of models ranging from classics to more modern machine learning-based offerings. In all cases, HNN fares well by consistently providing accurate mean/variance forecasts for all targets and horizons. Studying the resulting volatility paths reveals its versatility, while probabilistic forecasting evaluation metrics showcase its enviable reliability. Finally, we also demonstrate how this machinery can be merged with other structured deep learning models by revisiting Goulet Coulombe (2022)'s Neural Phillips Curve.
- Abstract(参考訳): 我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
私たちのアーキテクチャは、MLEをこの文脈で機能させる重要な要素をいくつか備えています。
第一に、ヘミスフィアはネットワークの入り口で共通のコアを共有し、エラー分散の様々な形態の時間変化に対応する。
第二に、過パラメータ化非線形モデルのクラスにおける平均/分散不確定性を破るボラティリティー強調制約を導入する。
第3に,両条件時の過度な適合を抑制するために,バッグ外現実チェックをブロックする。
第4に、アルゴリズムは標準的なディープラーニングソフトウェアを使用し、計算と統計の両方で巨大なデータセットを処理する。
私たちのHNN(Hemisphere Neural Network)であるErgoは、可能であれば主要な指標に基づいて、積極的なボラティリティ予測を提供し、必要であれば、過去の予測エラーの大きさに基づいて、反応性のボラティリティ予測を提供します。
従来のモデルから、より現代的な機械学習ベースの製品まで、幅広い実験とベンチマークによって、ポイントと密度の予測を評価します。
すべての場合、HNNは、すべての目標と地平線に対して、常に正確な平均/分散予測を提供することで、うまく運べます。
結果のボラティリティパスを研究することは、その汎用性を明らかにする一方で、確率的予測評価指標は、その実現可能な信頼性を示す。
最後に、Goulet Coulombe (2022)のNeural Phillips Curveを再考することにより、この機械を他の構造化ディープラーニングモデルとマージする方法を実証する。
関連論文リスト
- GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
マーケットのボラティリティを計測し、予測する新しいハイブリッドなDeep Learningモデルを提案する。
他の時系列モデルと比較すると、GINNは決定係数(R2$)、平均正方形誤差(MSE)、平均絶対誤差(MAE)の点で優れたサンプル外予測性能を示した。
論文 参考訳(メタデータ) (2024-09-30T23:53:54Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
ニューラルネットワークを用いた中レージ気象予報センターのモデル誤差補正手法を開発した。
ネットワークは、運用分析と分析インクリメントの大規模なデータセットを使用して、オフラインで事前トレーニングされている。
その後、データ同化や予測実験に使用されるように、オブジェクト指向予測システム(OOPS)内のIFSに統合される。
論文 参考訳(メタデータ) (2024-03-06T13:36:31Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned
Distribution Perturbation [16.540748935603723]
本研究では,SwinRNN予測器と摂動モジュールを組み合わせた天気予報モデルであるSwinVRNNを提案する。
SwinVRNNはECMWF統合予測システム(IFS)を2m温度と6時間総降水量で最大5日間のリードタイムで上回っている。
論文 参考訳(メタデータ) (2022-05-26T05:11:58Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
気候予測に対する補完的な機械学習に基づくアプローチを追求する。
特に,Densenetアーキテクチャのフィードフォワード畳み込みネットワークは,予測能力において,畳み込みLSTMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-23T00:28:36Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。