論文の概要: Extracting Clinician's Goals by What-if Interpretable Modeling
- arxiv url: http://arxiv.org/abs/2110.15165v1
- Date: Thu, 28 Oct 2021 14:41:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 22:03:22.913249
- Title: Extracting Clinician's Goals by What-if Interpretable Modeling
- Title(参考訳): 解釈可能なモデリングによる臨床医の目標抽出
- Authors: Chun-Hao Chang, George Alexandru Adam, Rich Caruana, Anna Goldenberg
- Abstract要約: 患者の治療における臨床医の報酬の回復に焦点をあてる。
今後の成果に基づいて,臨床医の行動を説明するために,「何」推論を取り入れた。
- 参考スコア(独自算出の注目度): 13.154512864498912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although reinforcement learning (RL) has tremendous success in many fields,
applying RL to real-world settings such as healthcare is challenging when the
reward is hard to specify and no exploration is allowed. In this work, we focus
on recovering clinicians' rewards in treating patients. We incorporate the
what-if reasoning to explain clinician's actions based on future outcomes. We
use generalized additive models (GAMs) - a class of accurate, interpretable
models - to recover the reward. In both simulation and a real-world hospital
dataset, we show our model outperforms baselines. Finally, our model's
explanations match several clinical guidelines when treating patients while we
found the previously-used linear model often contradicts them.
- Abstract(参考訳): 強化学習(RL)は多くの分野で大きな成功を収めているが、報酬の特定が困難で探索が許されていない場合、医療などの現実的な環境にRLを適用することは困難である。
本研究は,患者の治療における臨床医の報酬回復に焦点を当てる。
今後の成果に基づいて臨床医の行動を説明するために, 根拠を取り入れた。
一般化加法モデル(GAMs)は、精度の高い解釈可能なモデルのクラスであり、報酬を回復するために用いられる。
シミュレーションと実世界の病院データセットの両方で、我々のモデルがベースラインを上回ることを示している。
最後に, 従来使用されていたリニアモデルと矛盾する症例が多い中, 患者を治療する際の臨床ガイドラインに一致した。
関連論文リスト
- Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Exploration of the Rashomon Set Assists Trustworthy Explanations for
Medical Data [4.499833362998488]
本稿では,Rashomon集合におけるモデル探索の新たなプロセスを紹介し,従来のモデリング手法を拡張した。
動作の異なるモデルを検出するために,$textttRashomon_DETECT$アルゴリズムを提案する。
モデル間の変動効果の差を定量化するために,機能的データ解析に基づくプロファイル分散指数(PDI)を導入する。
論文 参考訳(メタデータ) (2023-08-22T13:53:43Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - The Shaky Foundations of Clinical Foundation Models: A Survey of Large
Language Models and Foundation Models for EMRs [5.7482228499062975]
非イメージングEMRデータに基づいて訓練された80以上の基礎モデルをレビューする。
ほとんどのモデルが、小さく、狭められた臨床データセットでトレーニングされていることが分かりました。
臨床基礎モデルの利点を評価するための評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-22T23:54:14Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
本研究は,全ての患者と1人の患者を対象に訓練を行った際のモデル性能と説明可能性の差異について検討した。
以上の結果から,患者の人口動態は,パフォーマンスや説明可能性,信頼性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2021-12-20T10:51:04Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。