論文の概要: On the Importance of Clinical Notes in Multi-modal Learning for EHR Data
- arxiv url: http://arxiv.org/abs/2212.03044v1
- Date: Tue, 6 Dec 2022 15:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 17:36:51.918465
- Title: On the Importance of Clinical Notes in Multi-modal Learning for EHR Data
- Title(参考訳): EHRデータのマルチモーダル学習における臨床ノートの重要性について
- Authors: Severin Husmann, Hugo Y\`eche, Gunnar R\"atsch, Rita Kuznetsova
- Abstract要約: 電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding deep learning model behavior is critical to accepting machine
learning-based decision support systems in the medical community. Previous
research has shown that jointly using clinical notes with electronic health
record (EHR) data improved predictive performance for patient monitoring in the
intensive care unit (ICU). In this work, we explore the underlying reasons for
these improvements. While relying on a basic attention-based model to allow for
interpretability, we first confirm that performance significantly improves over
state-of-the-art EHR data models when combining EHR data and clinical notes. We
then provide an analysis showing improvements arise almost exclusively from a
subset of notes containing broader context on patient state rather than
clinician notes. We believe such findings highlight deep learning models for
EHR data to be more limited by partially-descriptive data than by modeling
choice, motivating a more data-centric approach in the field.
- Abstract(参考訳): 深層学習モデル行動を理解することは、医療コミュニティにおける機械学習に基づく意思決定支援システムを受け入れる上で重要である。
これまでの研究では、電子健康記録(EHR)データと臨床ノートを併用することで、集中治療室(ICU)における患者モニタリングの予測性能が向上した。
本稿では,これらの改善の根本原因について考察する。
EHRデータと臨床ノートを組み合わせる際には,基本的な注意モデルに依存しながら,現状のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほとんど生じることを示す分析を行う。
このような知見は、部分記述型データよりも、部分記述型データによる深層学習モデルの方が、この分野におけるデータ中心のアプローチを動機付けている、と我々は信じている。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Learnable Prompt as Pseudo-Imputation: Reassessing the Necessity of
Traditional EHR Data Imputation in Downstream Clinical Prediction [16.638760651750744]
既存のディープラーニングトレーニングプロトコルでは、欠落した値を再構築するために統計情報や計算モデルを使用する必要がある。
本稿では,Pseudo Imputation (PAI) を新たなトレーニングプロトコルとして紹介する。
PAIはもはやインプットデータを導入しないが、ダウンストリームモデルの暗黙の選好を欠落値にモデル化するための学習可能なプロンプトを構築する。
論文 参考訳(メタデータ) (2024-01-30T07:19:36Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Knowledge Graph Representations to enhance Intensive Care Time-Series
Predictions [4.660203987415476]
提案手法は,ICUデータと医療知識を統合し,臨床意思決定モデルを改善する。
グラフ表現とバイタルサインと臨床報告を組み合わせることで、パフォーマンスを向上させる。
我々のモデルには、知識グラフノードが予測にどのように影響するかを理解するための解釈可能性コンポーネントが含まれています。
論文 参考訳(メタデータ) (2023-11-13T09:11:55Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
大規模な電子健康記録は、臨床テキストとバイタルサインデータの豊富な機械学習モデルを提供する。
臨床ノート分析のための高度な自然言語処理(NLP)アルゴリズムの出現にもかかわらず、生臨床データに存在する複雑なテキスト構造とノイズは重大な課題となっている。
本稿では,2つの表現学習技術,すなわちメートル法学習と微調整技術を用いて,臨床ノートの埋め込みを洗練させるシステムFINEEHRを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:42:52Z) - Toward Cohort Intelligence: A Universal Cohort Representation Learning
Framework for Electronic Health Record Analysis [15.137213823470544]
本稿では, 患者間の詳細なコホート情報を活用することで, EHR活用を促進するための共通コホート表現 lEarning (CORE) フレームワークを提案する。
COREは多様なバックボーンモデルに容易に適用でき、コホート情報を医療手法に注入してパフォーマンスを高める普遍的なプラグインフレームワークとして機能する。
論文 参考訳(メタデータ) (2023-04-10T09:12:37Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。