論文の概要: Decentralized Feature-Distributed Optimization for Generalized Linear
Models
- arxiv url: http://arxiv.org/abs/2110.15283v1
- Date: Thu, 28 Oct 2021 16:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 15:59:44.606431
- Title: Decentralized Feature-Distributed Optimization for Generalized Linear
Models
- Title(参考訳): 一般化線形モデルに対する分散特徴分散最適化
- Authors: Brighton Ancelin, Sohail Bahmani, Justin Romberg
- Abstract要約: 一般化線形モデルに対する「オール・フォー・ワン」分散学習問題を考える。
各サンプルの特徴は、ネットワーク内の複数の協調エージェントに分割されるが、応答変数を観察するエージェントは1つだけである。
問題の等価なサドル点定式化にシャンブル-ポック原始-双対アルゴリズムを適用する。
- 参考スコア(独自算出の注目度): 19.800898945436384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the "all-for-one" decentralized learning problem for generalized
linear models. The features of each sample are partitioned among several
collaborating agents in a connected network, but only one agent observes the
response variables. To solve the regularized empirical risk minimization in
this distributed setting, we apply the Chambolle--Pock primal--dual algorithm
to an equivalent saddle-point formulation of the problem. The primal and dual
iterations are either in closed-form or reduce to coordinate-wise minimization
of scalar convex functions. We establish convergence rates for the empirical
risk minimization under two different assumptions on the loss function
(Lipschitz and square root Lipschitz), and show how they depend on the
characteristics of the design matrix and the Laplacian of the network.
- Abstract(参考訳): 一般化線形モデルに対する"オール・フォー・ワン"分散学習問題を考える。
各サンプルの特徴は、ネットワーク内の複数の協調エージェントに分割されるが、応答変数を観察するエージェントは1つだけである。
この分散環境での正規化経験的リスク最小化を解決するために,Chambolle-Pock法を等価なサドル点定式化に適用する。
原始および双対の反復は閉形式か、スカラー凸関数の座標的最小化に還元される。
損失関数 (lipschitz と square root lipschitz) の2つの異なる仮定の下で経験的リスク最小化の収束率を確立し, ネットワークの設計行列とラプラシアンの特性にどのように依存するかを示す。
関連論文リスト
- A Convex Relaxation Approach to Generalization Analysis for Parallel Positively Homogeneous Networks [35.85188662524247]
入力出力マップが等質写像の和であるニューラルネットワークのクラスを研究する。
このようなネットワークに対する線形境界に対する一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T03:24:34Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - A Unified Analysis of Multi-task Functional Linear Regression Models
with Manifold Constraint and Composite Quadratic Penalty [0.0]
マルチタスク学習のパワーは、傾斜関数に付加的な構造を課すことによってもたらされる。
合成ペナルティは、多様体曲率の定量化に役立つ特定のノルムを誘導することを示す。
縮小ランクモデルとグラフラプラシア正規化モデルに統一収束上限を求め、特に適用する。
論文 参考訳(メタデータ) (2022-11-09T13:32:23Z) - Sparsest Univariate Learning Models Under Lipschitz Constraint [31.28451181040038]
一次元回帰問題に対する連続領域定式化を提案する。
リプシッツ定数をユーザ定義上界を用いて明示的に制御する。
いずれの問題も、連続的かつ断片的線形なグローバル最小化を許容していることが示される。
論文 参考訳(メタデータ) (2021-12-27T07:03:43Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - A Multi-Agent Primal-Dual Strategy for Composite Optimization over
Distributed Features [52.856801164425086]
目的関数を滑らかな局所関数と凸(おそらく非滑らか)結合関数の和とするマルチエージェント共有最適化問題について検討する。
論文 参考訳(メタデータ) (2020-06-15T19:40:24Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
合成データセットの一般線形回帰と分類について検討した。
我々は,高次元構造を考察し,統計物理学からのレプリカ法を用いる。
閾値をピークとしたロジスティック回帰のためのいわゆる二重降下挙動を得る方法を示す。
隠れ多様体モデルにより生成されたデータにおいて相関関係が果たす役割について論じる。
論文 参考訳(メタデータ) (2020-02-21T14:49:41Z) - Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach [14.558626910178127]
固有値問題は、演算子によって誘導される半群フローの固定点問題として再構成される。
この方法は拡散モンテカルロと同様の精神を持つが、ニューラル・ネットワーク・アンサッツによる固有関数への直接近似を増大させる。
我々の手法はいくつかの数値例で正確な固有値と固有関数の近似を提供することができる。
論文 参考訳(メタデータ) (2020-02-07T03:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。