Surrogate models for quantum spin systems based on reduced order
modeling
- URL: http://arxiv.org/abs/2110.15665v3
- Date: Fri, 11 Mar 2022 06:19:15 GMT
- Title: Surrogate models for quantum spin systems based on reduced order
modeling
- Authors: Michael F. Herbst, Stefan Wessel, Matteo Rizzi, Benjamin Stamm
- Abstract summary: We present a methodology to investigate phase-diagrams of quantum models based on the principle of the reduced basis method (RBM)
We benchmark the method in two test cases, a chain of excited Rydberg atoms and a geometrically frustrated antiferromagnetic two-dimensional lattice model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a methodology to investigate phase-diagrams of quantum models
based on the principle of the reduced basis method (RBM). The RBM is built from
a few ground-state snapshots, i.e., lowest eigenvectors of the full system
Hamiltonian computed at well-chosen points in the parameter space of interest.
We put forward a greedy-strategy to assemble such small-dimensional basis,
i.e., to select where to spend the numerical effort needed for the snapshots.
Once the RBM is assembled, physical observables required for mapping out the
phase-diagram (e.g., structure factors) can be computed for any parameter value
with a modest computational complexity, considerably lower than the one
associated to the underlying Hilbert space dimension. We benchmark the method
in two test cases, a chain of excited Rydberg atoms and a geometrically
frustrated antiferromagnetic two-dimensional lattice model, and illustrate the
accuracy of the approach. In particular, we find that the ground-manifold can
be approximated to sufficient accuracy with a moderate number of basis
functions, which increases very mildly when the number of microscopic
constituents grows - in stark contrast to the exponential growth of the Hilbert
space needed to describe each of the few snapshots. A combination of the
presented RBM approach with other numerical techniques circumventing even the
latter big cost, e.g., Tensor Network methods, is a tantalising outlook of this
work.
Related papers
- Shot-noise reduction for lattice Hamiltonians [0.7852714805965528]
Efficiently estimating energy expectation values of lattice Hamiltonians on quantum computers is a serious challenge.
We introduce geometric partitioning as a scalable alternative.
We show how the sampling number improvement translates to imperfect eigenstate improvements.
arXiv Detail & Related papers (2024-10-28T17:50:28Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Weighted Riesz Particles [0.0]
We consider the target distribution as a mapping where the infinite-dimensional space of the parameters consists of a number of deterministic submanifolds.
We study the properties of the point, called Riesz, and embed it into sequential MCMC.
We find that there will be higher acceptance rates with fewer evaluations.
arXiv Detail & Related papers (2023-12-01T14:36:46Z) - Neural network approach to quasiparticle dispersions in doped
antiferromagnets [0.0]
We study the ability of neural quantum states to represent the bosonic and fermionic $t-J$ model on different 1D and 2D lattices.
We present a method to calculate dispersion relations from the neural network state representation.
arXiv Detail & Related papers (2023-10-12T17:59:33Z) - Reduced basis surrogates for quantum spin systems based on tensor
networks [0.0]
We show how a greedy strategy to assemble the reduced basis can be implemented.
observables required for the computation of phase diagrams can be computed independent of the underlying Hilbert space.
We illustrate the efficiency and accuracy of this approach for different one-dimensional quantum spin-1 models, including anisotropic as well as biquadratic exchange interactions.
arXiv Detail & Related papers (2023-04-26T14:29:58Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
We exploit the representation power of RBMs to provide an exact decomposition of many-body contact interactions into one-body operators.
This construction generalizes the well known Hirsch's transform used for the Hubbard model to more complicated theories such as Pionless EFT in nuclear physics.
arXiv Detail & Related papers (2020-05-07T15:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.