GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily
- URL: http://arxiv.org/abs/2110.15777v1
- Date: Fri, 29 Oct 2021 13:44:09 GMT
- Title: GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily
- Authors: Lun Du, Xiaozhou Shi, Qiang Fu, Hengyu Liu, Shi Han and Dongmei Zhang
- Abstract summary: Graph Neural Networks (GNNs) are widely used on a variety of graph-based machine learning tasks.
For node-level tasks, GNNs have strong power to model the homophily property of graphs.
We propose a novel GNN model based on a bi- kernel feature transformation and a selection gate.
- Score: 24.742449127169586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are widely used on a variety of graph-based
machine learning tasks. For node-level tasks, GNNs have strong power to model
the homophily property of graphs (i.e., connected nodes are more similar) while
their ability to capture heterophily property is often doubtful. This is
partially caused by the design of the feature transformation with the same
kernel for the nodes in the same hop and the followed aggregation operator. One
kernel cannot model the similarity and the dissimilarity (i.e., the positive
and negative correlation) between node features simultaneously even though we
use attention mechanisms like Graph Attention Network (GAT), since the weight
calculated by attention is always a positive value. In this paper, we propose a
novel GNN model based on a bi-kernel feature transformation and a selection
gate. Two kernels capture homophily and heterophily information respectively,
and the gate is introduced to select which kernel we should use for the given
node pairs. We conduct extensive experiments on various datasets with different
homophily-heterophily properties. The experimental results show consistent and
significant improvements against state-of-the-art GNN methods.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Transfer Entropy in Graph Convolutional Neural Networks [0.0]
Graph Convolutional Networks (GCN) are Graph Neural Networks where the convolutions are applied over a graph.
In this study, we address two important challenges related to GCNs: i.
Oversmoothing is the degradation of the discriminative capacity of nodes as a result of repeated aggregations.
We propose a new strategy for addressing these challenges in GCNs based on Transfer Entropy (TE), which measures of the amount of directed transfer of information between two time varying nodes.
arXiv Detail & Related papers (2024-06-08T20:09:17Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Break the Wall Between Homophily and Heterophily for Graph
Representation Learning [25.445073413243925]
Homophily and heterophily are intrinsic properties of graphs that describe whether two linked nodes share similar properties.
This work identifies three graph features, including the ego node feature, the aggregated node feature, and the graph structure feature, that are essential for graph representation learning.
It proposes a new GNN model called OGNN that extracts all three graph features and adaptively fuses them to achieve generalizability across the whole spectrum of homophily.
arXiv Detail & Related papers (2022-10-08T19:37:03Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
arXiv Detail & Related papers (2022-05-27T01:29:03Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.