Towards Intelligent Load Balancing in Data Centers
- URL: http://arxiv.org/abs/2110.15788v1
- Date: Wed, 27 Oct 2021 12:47:30 GMT
- Title: Towards Intelligent Load Balancing in Data Centers
- Authors: Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, Thomas Heide Clausen
- Abstract summary: This paper proposes Aquarius to bridge the gap between machine learning and networking systems.
It demonstrates its ability of conducting both offline data analysis and online model deployment in realistic systems.
- Score: 0.5505634045241288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network load balancers are important components in data centers to provide
scalable services. Workload distribution algorithms are based on heuristics,
e.g., Equal-Cost Multi-Path (ECMP), Weighted-Cost Multi-Path (WCMP) or naive
machine learning (ML) algorithms, e.g., ridge regression. Advanced ML-based
approaches help achieve performance gain in different networking and system
problems. However, it is challenging to apply ML algorithms on networking
problems in real-life systems. It requires domain knowledge to collect features
from low-latency, high-throughput, and scalable networking systems, which are
dynamic and heterogenous. This paper proposes Aquarius to bridge the gap
between ML and networking systems and demonstrates its usage in the context of
network load balancers. This paper demonstrates its ability of conducting both
offline data analysis and online model deployment in realistic systems. The
results show that the ML model trained and deployed using Aquarius improves
load balancing performance yet they also reveals more challenges to be resolved
to apply ML for networking systems.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Flexible Payload Configuration for Satellites using Machine Learning [33.269035910233704]
Current GEO systems distribute power and bandwidth uniformly across beams using multi-beam footprints with fractional frequency reuse.
Recent research reveals the limitations of this approach in heterogeneous traffic scenarios, leading to inefficiencies.
This paper presents a machine learning (ML)-based approach to Radio Resource Management (RRM)
arXiv Detail & Related papers (2023-10-18T13:45:17Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Learning Distributed and Fair Policies for Network Load Balancing as
Markov Potentia Game [4.892398873024191]
This paper investigates the network load balancing problem in data centers (DCs) where multiple load balancers (LBs) are deployed.
The challenges of this problem consist of the heterogeneous processing architecture and dynamic environments.
We formulate the multi-agent load balancing problem as a Markov potential game, with a carefully and properly designed workload distribution fairness as the potential function.
A fully distributed MARL algorithm is proposed to approximate the Nash equilibrium of the game.
arXiv Detail & Related papers (2022-06-03T08:29:02Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Multi-Agent Reinforcement Learning for Network Load Balancing in Data
Center [4.141301293112916]
This paper presents the network load balancing problem, a challenging real-world task for reinforcement learning methods.
The cooperative network load balancing task is formulated as a Dec-POMDP problem, which naturally induces the MARL methods.
To bridge the reality gap for applying learning-based methods, all methods are directly trained and evaluated on an emulation system.
arXiv Detail & Related papers (2022-01-27T18:47:59Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Machine Learning for Intelligent Optical Networks: A Comprehensive
Survey [9.947717243638289]
It is imperative to improve intelligence in communication network, and several aspects have been incorporating with Artificial Intelligence (AI) and Machine Learning (ML)
In this paper, a detailed survey of existing applications of ML for intelligent optical networks is presented.
The applications of ML are classified in terms of their use cases, which are categorized into optical network control and resource management, and optical networks monitoring and survivability.
arXiv Detail & Related papers (2020-03-11T13:51:38Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.