論文の概要: Holistic Deep Learning
- arxiv url: http://arxiv.org/abs/2110.15829v5
- Date: Mon, 20 Mar 2023 23:39:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:50:55.724513
- Title: Holistic Deep Learning
- Title(参考訳): ホロスティックな深層学習
- Authors: Dimitris Bertsimas, Kimberly Villalobos Carballo, L\'eonard Boussioux,
Michael Lingzhi Li, Alex Paskov, Ivan Paskov
- Abstract要約: 本稿では、入力摂動、過度なパラメータ化、性能不安定といった脆弱性の課題に対処する、新しい総合的なディープラーニングフレームワークを提案する。
提案したフレームワークは、標準的なディープラーニングモデルよりも正確性、堅牢性、疎性、安定性を全面的に改善する。
- 参考スコア(独自算出の注目度): 3.718942345103135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel holistic deep learning framework that
simultaneously addresses the challenges of vulnerability to input
perturbations, overparametrization, and performance instability from different
train-validation splits. The proposed framework holistically improves accuracy,
robustness, sparsity, and stability over standard deep learning models, as
demonstrated by extensive experiments on both tabular and image data sets. The
results are further validated by ablation experiments and SHAP value analysis,
which reveal the interactions and trade-offs between the different evaluation
metrics. To support practitioners applying our framework, we provide a
prescriptive approach that offers recommendations for selecting an appropriate
training loss function based on their specific objectives. All the code to
reproduce the results can be found at https://github.com/kimvc7/HDL.
- Abstract(参考訳): 本稿では,入力の摂動,過パラメータ化,および列車評価の異なる分割による性能の不安定性に対する脆弱性の課題を同時に解決する,新しい総合的ディープラーニングフレームワークを提案する。
提案されたフレームワークは、表データと画像データセットの両方の広範な実験によって示されるように、標準的なディープラーニングモデルよりも正確性、堅牢性、スパーシティ、安定性を段階的に改善する。
さらに,評価指標間の相互作用とトレードオフを明らかにするアブレーション実験とSHAP値分析によって,結果がさらに検証される。
このフレームワークを適用する実践者を支援するために,我々は,特定の目的に基づいた適切なトレーニング損失関数の選択を推奨する規範的アプローチを提案する。
結果を再現するコードはすべてhttps://github.com/kimvc7/HDLにある。
関連論文リスト
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
我々は、ディープラーニングのための堅牢なOoD一般化への道を探る。
まず,認識に必須でない特徴間の素早い相関を解消するための,新しい効果的なアプローチを提案する。
次に,OoDシナリオにおけるニューラルアーキテクチャ探索の強化問題について検討する。
論文 参考訳(メタデータ) (2024-10-25T20:50:32Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - An Expert's Guide to Training Physics-informed Neural Networks [5.198985210238479]
物理インフォームドニューラルネットワーク(PINN)はディープラーニングフレームワークとして普及している。
PINNは観測データと偏微分方程式(PDE)の制約をシームレスに合成することができる。
PINNのトレーニング効率と全体的な精度を大幅に向上させる一連のベストプラクティスを提案する。
論文 参考訳(メタデータ) (2023-08-16T16:19:25Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
すべてのシナリオで正確であるネットワークをトレーニングすることはできない。
深層学習法は不確実性を推定するためにモデルパラメータ空間をサンプリングする。
これらのパラメータは、しばしば、敵の攻撃によって悪用される、同じ脆弱性にさらされる。
本稿では,特徴デコレーションとフーリエ分割に基づく新たなアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T02:36:36Z) - Learning Robust Representation for Clustering through Locality
Preserving Variational Discriminative Network [16.259673823482665]
Variational Deep Embeddingは、さまざまなクラスタリングタスクで大きな成功を収めます。
VaDEは,1)入力ノイズに弱い,2)隣接するデータポイント間の局所性情報を無視する,という2つの問題に悩まされている。
強固な埋め込み判別器と局所構造制約によりvadeを改善する共同学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-25T02:31:55Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。