論文の概要: An Expert's Guide to Training Physics-informed Neural Networks
- arxiv url: http://arxiv.org/abs/2308.08468v1
- Date: Wed, 16 Aug 2023 16:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 12:45:33.325109
- Title: An Expert's Guide to Training Physics-informed Neural Networks
- Title(参考訳): 物理に変形したニューラルネットワークの訓練に関する専門家ガイド
- Authors: Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)はディープラーニングフレームワークとして普及している。
PINNは観測データと偏微分方程式(PDE)の制約をシームレスに合成することができる。
PINNのトレーニング効率と全体的な精度を大幅に向上させる一連のベストプラクティスを提案する。
- 参考スコア(独自算出の注目度): 5.198985210238479
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Physics-informed neural networks (PINNs) have been popularized as a deep
learning framework that can seamlessly synthesize observational data and
partial differential equation (PDE) constraints. Their practical effectiveness
however can be hampered by training pathologies, but also oftentimes by poor
choices made by users who lack deep learning expertise. In this paper we
present a series of best practices that can significantly improve the training
efficiency and overall accuracy of PINNs. We also put forth a series of
challenging benchmark problems that highlight some of the most prominent
difficulties in training PINNs, and present comprehensive and fully
reproducible ablation studies that demonstrate how different architecture
choices and training strategies affect the test accuracy of the resulting
models. We show that the methods and guiding principles put forth in this study
lead to state-of-the-art results and provide strong baselines that future
studies should use for comparison purposes. To this end, we also release a
highly optimized library in JAX that can be used to reproduce all results
reported in this paper, enable future research studies, as well as facilitate
easy adaptation to new use-case scenarios.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、観測データと偏微分方程式(PDE)制約をシームレスに合成できるディープラーニングフレームワークとして普及している。
しかし、その実用性は、病理の訓練によって阻害されるだけでなく、深層学習の専門知識を欠いたユーザーによる不適切な選択によってしばしば妨げられる。
本稿では,PINNのトレーニング効率と全体的な精度を大幅に向上させる一連のベストプラクティスを提案する。
私たちはまた、ピンのトレーニングの最も顕著な困難を浮き彫りにした一連の挑戦的なベンチマーク問題を提示し、異なるアーキテクチャの選択とトレーニング戦略が結果のモデルのテスト精度にどのように影響するかを示す包括的かつ完全に再現可能なアブレーション研究を提示した。
本研究で提示された手法と指導原則が最先端の成果につながり,今後の研究が比較目的に使用するべき強固なベースラインを提供することを示す。
この目的のために、我々は、本論文で報告されたすべての結果を再現し、将来の研究研究を可能にし、新しいユースケースシナリオへの適応を容易にするために使用できる、jaxの高度に最適化されたライブラリもリリースします。
関連論文リスト
- Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNは、解データを必要としない微分方程式の解をエミュレートするように訓練されたニューラルネットワークアーキテクチャである。
トレーニング領域外におけるPINN予測の挙動を実証分析する。
PINNのアルゴリズム設定が一般化のポテンシャルに影響を及ぼすかどうかを評価し,予測に対する各効果を示す。
論文 参考訳(メタデータ) (2023-02-15T09:51:56Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Improving Sample Efficiency of Deep Learning Models in Electricity
Market [0.41998444721319217]
我々は,サンプルの効率を向上させるため,知識強化トレーニング(KAT)という一般的なフレームワークを提案する。
本稿では,いくつかの合成データを生成する新しいデータ拡張手法を提案する。
現代の学習理論は, 効果的な予測誤差フィードバック, 信頼損失関数, リッチ勾配雑音の観点から, 提案手法の有効性を実証している。
論文 参考訳(メタデータ) (2022-10-11T16:35:13Z) - Holistic Deep Learning [3.718942345103135]
本稿では、入力摂動、過度なパラメータ化、性能不安定といった脆弱性の課題に対処する、新しい総合的なディープラーニングフレームワークを提案する。
提案したフレームワークは、標準的なディープラーニングモデルよりも正確性、堅牢性、疎性、安定性を全面的に改善する。
論文 参考訳(メタデータ) (2021-10-29T14:46:32Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
本稿では,学習力学を最大化するためにサンプルを選択する理論駆動型深層能動学習法(Dynamical)を提案する。
動的学習は、他のベースラインを一貫して上回るだけでなく、大規模なディープラーニングモデルでもうまくスケール可能であることを示す。
論文 参考訳(メタデータ) (2021-10-16T16:51:05Z) - Analytically Tractable Bayesian Deep Q-Learning [0.0]
我々は時間差Q-ラーニングフレームワークを適応させ、抽出可能な近似ガウス推論(TAGI)と互換性を持たせる。
我々は,TAGIがバックプロパゲーション学習ネットワークに匹敵する性能に到達できることを実証した。
論文 参考訳(メタデータ) (2021-06-21T13:11:52Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。