Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures
- URL: http://arxiv.org/abs/2110.15895v1
- Date: Fri, 29 Oct 2021 16:29:31 GMT
- Title: Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures
- Authors: Shahin Ghazvineh, Gholamreza Nouri, Seyed Hossein Hosseini Lavassani,
Vahidreza Gharehbaghi, Andy Nguyen
- Abstract summary: We present an application of 2-D convolutional neural networks (2-D CNNs) designed to perform both feature extraction and classification stages.
The method uses a network of lighted CNNs instead of deep and takes raw acceleration signals as input.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an application of 2-D convolutional neural networks
(2-D CNNs) designed to perform both feature extraction and classification
stages as a single organism to solve the highlighted problems. The method uses
a network of lighted CNNs instead of deep and takes raw acceleration signals as
input. Using lighted CNNs, in which every one of them is optimized for a
specific element, increases the accuracy and makes the network faster to
perform. Also, a new framework is proposed for decreasing the data required in
the training phase. We verified our method on Qatar University Grandstand
Simulator (QUGS) benchmark data provided by Structural Dynamics Team. The
results showed improved accuracy over other methods, and running time was
adequate for real-time applications.
Related papers
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - A Domain Decomposition-Based CNN-DNN Architecture for Model Parallel Training Applied to Image Recognition Problems [0.0]
A novel CNN-DNN architecture is proposed that naturally supports a model parallel training strategy.
The proposed approach can significantly accelerate the required training time compared to the global model.
Results show that the proposed approach can also help to improve the accuracy of the underlying classification problem.
arXiv Detail & Related papers (2023-02-13T18:06:59Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Automatic Extraction of Road Networks from Satellite Images by using
Adaptive Structural Deep Belief Network [0.0]
Our model is applied to an automatic recognition method of road network system, called RoadTracer.
RoadTracer can generate a road map on the ground surface from aerial photograph data.
In order to improve the accuracy and the calculation time, our Adaptive DBN was implemented on the RoadTracer instead of the CNN.
arXiv Detail & Related papers (2021-10-25T07:06:10Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.