論文の概要: On-device Real-time Hand Gesture Recognition
- arxiv url: http://arxiv.org/abs/2111.00038v1
- Date: Fri, 29 Oct 2021 18:33:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 03:38:45.138488
- Title: On-device Real-time Hand Gesture Recognition
- Title(参考訳): オンデバイスリアルタイムハンドジェスチャ認識
- Authors: George Sung, Kanstantsin Sokal, Esha Uboweja, Valentin Bazarevsky,
Jonathan Baccash, Eduard Gabriel Bazavan, Chuo-Ling Chang, Matthias Grundmann
- Abstract要約: 本稿では,1台のRGBカメラから予め定義された静的ジェスチャーを検知するデバイス上でのリアルタイム手ジェスチャー認識(HGR)システムを提案する。
ハンドスケルトントラッカーの基礎としてMediaPipe Handsを使用し、キーポイント精度を改善し、世界距離空間における3次元キーポイントの推定を追加する。
- 参考スコア(独自算出の注目度): 1.4658400971135652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an on-device real-time hand gesture recognition (HGR) system,
which detects a set of predefined static gestures from a single RGB camera. The
system consists of two parts: a hand skeleton tracker and a gesture classifier.
We use MediaPipe Hands as the basis of the hand skeleton tracker, improve the
keypoint accuracy, and add the estimation of 3D keypoints in a world metric
space. We create two different gesture classifiers, one based on heuristics and
the other using neural networks (NN).
- Abstract(参考訳): 本稿では,単一のrgbカメラから予め定義された静的ジェスチャを検知するオンデバイスリアルタイムハンドジェスチャ認識(hgr)システムを提案する。
システムはハンドスケルトントラッカーとジェスチャー分類器の2つの部分で構成される。
ハンドスケルトントラッカーの基礎としてMediaPipe Handsを使用し、キーポイント精度を改善し、世界距離空間における3次元キーポイントの推定を追加する。
ヒューリスティックスとニューラルネットワーク(NN)を用いた2つの異なるジェスチャー分類器を作成する。
関連論文リスト
- Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition [17.62840662799232]
本研究では, 局所球面高調波と相対角埋め込みを用いた手動作認識のための新しい手動作表現法を提案する。
Spherical Harmonicsの使用は、オブジェクト間の差異や視点の変化に対して手の動き認識をさらに堅牢にする回転不変表現を生成する。
論文 参考訳(メタデータ) (2023-08-21T08:17:42Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Real-Time Hand Gesture Identification in Thermal Images [0.0]
我々のシステムは、フレーム内の複数のハンド領域を処理し、リアルタイムアプリケーションで高速に処理することができる。
ジェスチャー10のサーマルイメージデータセットを新たに収集し,手動作認識精度97%を報告した。
論文 参考訳(メタデータ) (2023-03-04T05:02:35Z) - Simultaneous prediction of hand gestures, handedness, and hand keypoints
using thermal images [0.6087960723103347]
赤外線カメラで捉えたサーマルデータを用いて手指のジェスチャー分類,手指検出,手指キーポイントの局所化を同時に行う手法を提案する。
提案手法は,共有エンコーダデコーダ層を含む新しい深層マルチタスク学習アーキテクチャを用いて,各タスクに専用の3つのブランチを付加する。
論文 参考訳(メタデータ) (2023-03-02T19:25:40Z) - Im2Hands: Learning Attentive Implicit Representation of Interacting
Two-Hand Shapes [58.551154822792284]
Implicit Two Hands (Im2Hands) は、2つの相互作用する手の最初の暗黙の表現である。
Im2Handsは、両手と手と手と画像のコヒーレンシーの高い2つの手のきめ細かい幾何学を生成することができる。
両手再建におけるIm2Handsの有効性を, 関連手法と比較して実験的に実証した。
論文 参考訳(メタデータ) (2023-02-28T06:38:25Z) - Design of Human Machine Interface through vision-based low-cost Hand
Gesture Recognition system based on deep CNN [3.5665681694253903]
リアルタイムの手ジェスチャー認識システムを用いたヒューマンコンピュータインタフェース(HCI)を提案する。
本システムは,手検出,(2)ジェスチャーセグメンテーション,(3)移動学習による6つの事前学習CNNモデルの使用,(4)対話型ヒューマンマシンインタフェースの構築,(5)ジェスチャー制御仮想マウスの開発,の6段階からなる。
論文 参考訳(メタデータ) (2022-07-07T06:50:08Z) - A Skeleton-Driven Neural Occupancy Representation for Articulated Hands [49.956892429789775]
Hand ArticuLated Occupancy (HALO) は、3Dキーポイントと神経暗黙の面の利点を橋渡しする手話の表現である。
本研究では,3次元物体を把握した手の条件生成作業に対するHALOの適用性を示す。
論文 参考訳(メタデータ) (2021-09-23T14:35:19Z) - HandVoxNet++: 3D Hand Shape and Pose Estimation using Voxel-Based Neural
Networks [71.09275975580009]
HandVoxNet++は、完全に教師された方法でトレーニングされた3Dおよびグラフ畳み込みを備えた、ボクセルベースのディープネットワークである。
HandVoxNet++は2つの手形状表現に依存している。1つは手形状の3Dボキセル化グリッドで、メッシュトポロジを保存していない。
我々は、新しいニューラルグラフ畳み込みに基づくメッシュレジストレーション(GCN-MeshReg)または古典的セグメントワイド非リジッド重力法(NRGA++)と、手表面をボキセル化ハンド形状に整列させることにより、両表現の利点を組み合わせる。
論文 参考訳(メタデータ) (2021-07-02T17:59:54Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild [62.450907796261646]
手のジェスチャーの認識は、ソフトウェアによって推定される手の骨格のストリームから直接行うことができる。
最近のスケルトンからのジェスチャーや行動認識の進歩にもかかわらず、現在の最先端技術が現実のシナリオでどの程度うまく機能するかは明らかではない。
本稿では,SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild contestについて述べる。
論文 参考訳(メタデータ) (2021-06-21T10:57:49Z) - Understanding the hand-gestures using Convolutional Neural Networks and
Generative Adversial Networks [0.0]
このシステムは、リアルタイムハンドトラッキング、トレーニングジェスチャ、および畳み込みニューラルネットワークを用いたジェスチャー認識の3つのモジュールで構成されている。
アルファベットや数字を含む36のジェスチャーの語彙でテストされ、アプローチの有効性が検証されている。
論文 参考訳(メタデータ) (2020-11-10T02:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。