論文の概要: Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition
- arxiv url: http://arxiv.org/abs/2308.10557v2
- Date: Tue, 14 Nov 2023 12:20:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 18:25:21.993782
- Title: Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition
- Title(参考訳): 局所球高調波による骨格に基づく手動作認識の改善
- Authors: Katharina Prasse, Steffen Jung, Yuxuan Zhou, Margret Keuper
- Abstract要約: 本研究では, 局所球面高調波と相対角埋め込みを用いた手動作認識のための新しい手動作表現法を提案する。
Spherical Harmonicsの使用は、オブジェクト間の差異や視点の変化に対して手の動き認識をさらに堅牢にする回転不変表現を生成する。
- 参考スコア(独自算出の注目度): 17.62840662799232
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Hand action recognition is essential. Communication, human-robot
interactions, and gesture control are dependent on it. Skeleton-based action
recognition traditionally includes hands, which belong to the classes which
remain challenging to correctly recognize to date. We propose a method
specifically designed for hand action recognition which uses relative angular
embeddings and local Spherical Harmonics to create novel hand representations.
The use of Spherical Harmonics creates rotation-invariant representations which
make hand action recognition even more robust against inter-subject differences
and viewpoint changes. We conduct extensive experiments on the hand joints in
the First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose
Annotations, and on the NTU RGB+D 120 dataset, demonstrating the benefit of
using Local Spherical Harmonics Representations. Our code is available at
https://github.com/KathPra/LSHR_LSHT.
- Abstract(参考訳): ハンドアクション認識は不可欠である。
コミュニケーション、人間とロボットの相互作用、ジェスチャー制御はそれに依存する。
スケルトンベースのアクション認識は伝統的に、これまで正しく認識することが難しいクラスに属する手を含んでいる。
本研究では, 局所球面高調波と相対角埋め込みを用いた手動作認識のための新しい手動作表現法を提案する。
Spherical Harmonicsの使用は、オブジェクト間の差異や視点の変化に対して手の動き認識をさらに堅牢にする回転不変表現を生成する。
我々は、RGB-Dビデオと3Dハンドポッドアノテーションを用いたファーストパーソンハンドアクションベンチマークと、NTU RGB+D 120データセットでハンドジョイントについて広範な実験を行い、局所球高調波表現の利点を実証した。
私たちのコードはhttps://github.com/kathpra/lshr_lshtで利用可能です。
関連論文リスト
- On the Utility of 3D Hand Poses for Action Recognition [36.64538554919222]
HandFormerは、手動オブジェクトの相互作用を効率的にモデル化する新しいマルチモーダルトランスである。
我々は手指のモデリングを分類し,その短期的軌跡によって各関節を表現した。
我々は,アセンブラ101およびH2O上での最先端性能を新たに達成し,エゴセントリックな動作認識を大幅に改善した。
論文 参考訳(メタデータ) (2024-03-14T18:52:34Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
手は器用で多用途なマニピュレータであり、人間が物体や環境とどのように相互作用するかの中心である。
現実的な手オブジェクトの相互作用をモデル化することは、コンピュータグラフィックス、コンピュータビジョン、混合現実の応用において重要である。
GRIPは、体と物体の3次元運動を入力として取り、物体の相互作用の前、中、後の両方の両手の現実的な動きを合成する学習ベースの手法である。
論文 参考訳(メタデータ) (2023-08-22T17:59:51Z) - HandNeRF: Neural Radiance Fields for Animatable Interacting Hands [122.32855646927013]
神経放射場(NeRF)を用いて手の動きを正確に再現する新しい枠組みを提案する。
我々は,提案するHandNeRFのメリットを検証するための広範囲な実験を行い,その成果を報告する。
論文 参考訳(メタデータ) (2023-03-24T06:19:19Z) - Im2Hands: Learning Attentive Implicit Representation of Interacting
Two-Hand Shapes [58.551154822792284]
Implicit Two Hands (Im2Hands) は、2つの相互作用する手の最初の暗黙の表現である。
Im2Handsは、両手と手と手と画像のコヒーレンシーの高い2つの手のきめ細かい幾何学を生成することができる。
両手再建におけるIm2Handsの有効性を, 関連手法と比較して実験的に実証した。
論文 参考訳(メタデータ) (2023-02-28T06:38:25Z) - Generative Action Description Prompts for Skeleton-based Action
Recognition [15.38417530693649]
本稿では,骨格に基づく行動認識のためのGAP(Generative Action-Description Prompts)アプローチを提案する。
本研究では,行動の身体部分の動きのテキスト記述を自動的に生成する知識エンジンとして,事前学習された大規模言語モデルを用いる。
提案手法は,推定コストを伴わずに,様々なベースラインモデルに対して顕著な改善を実現する。
論文 参考訳(メタデータ) (2022-08-10T12:55:56Z) - Monocular 3D Reconstruction of Interacting Hands via Collision-Aware
Factorized Refinements [96.40125818594952]
単眼のRGB画像から3Dインタラクションハンドを再構築する試みを初めて行った。
提案手法では, 高精度な3次元ポーズと最小の衝突で3次元ハンドメッシュを生成することができる。
論文 参考訳(メタデータ) (2021-11-01T08:24:10Z) - On-device Real-time Hand Gesture Recognition [1.4658400971135652]
本稿では,1台のRGBカメラから予め定義された静的ジェスチャーを検知するデバイス上でのリアルタイム手ジェスチャー認識(HGR)システムを提案する。
ハンドスケルトントラッカーの基礎としてMediaPipe Handsを使用し、キーポイント精度を改善し、世界距離空間における3次元キーポイントの推定を追加する。
論文 参考訳(メタデータ) (2021-10-29T18:33:25Z) - Egocentric View Hand Action Recognition by Leveraging Hand Surface and
Hand Grasp Type [15.878905144552204]
このフレームワークは、手メッシュモデルの平均曲率を合成し、3次元空間における手表面形状を符号化する。
手のつかみタイプと手の平均曲率を用いることで,手の動き認識の性能が向上する。
論文 参考訳(メタデータ) (2021-09-08T17:12:02Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild [62.450907796261646]
手のジェスチャーの認識は、ソフトウェアによって推定される手の骨格のストリームから直接行うことができる。
最近のスケルトンからのジェスチャーや行動認識の進歩にもかかわらず、現在の最先端技術が現実のシナリオでどの程度うまく機能するかは明らかではない。
本稿では,SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild contestについて述べる。
論文 参考訳(メタデータ) (2021-06-21T10:57:49Z) - FineHand: Learning Hand Shapes for American Sign Language Recognition [16.862375555609667]
本稿では,手形状の埋め込みを効果的に学習するためのアプローチを提案する。
手形認識には手動ラベル付き手形と高信頼度予測を組み合わせて深部畳み込みニューラルネットワーク(CNN)を訓練する。
より高品質な手形状モデルが最終映像ジェスチャー分類の精度を大幅に向上させることを実証する。
論文 参考訳(メタデータ) (2020-03-04T23:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。