論文の概要: Visual Explanations for Convolutional Neural Networks via Latent
Traversal of Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2111.00116v2
- Date: Tue, 2 Nov 2021 00:42:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 11:07:25.854573
- Title: Visual Explanations for Convolutional Neural Networks via Latent
Traversal of Generative Adversarial Networks
- Title(参考訳): 生成逆数ネットワークの潜在トラバースによる畳み込みニューラルネットワークの視覚的説明
- Authors: Amil Dravid, Aggelos K. Katsaggelos
- Abstract要約: 本稿では、GAN(Generative Adversarial Networks)を利用して、畳み込みニューラルネットワーク(CNN)が学んだことを解釈する手法を提案する。
我々のGANフレームワークは、新型コロナウイルスの特徴から肺の構造を切り離す。このGANを用いて、GANの潜伏した空間で補間することにより、胸部X線写真中の一対の陰性肺からCOVID陽性肺への移行を可視化することができる。
- 参考スコア(独自算出の注目度): 17.475341881835355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lack of explainability in artificial intelligence, specifically deep neural
networks, remains a bottleneck for implementing models in practice. Popular
techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM)
provide a coarse map of salient features in an image, which rarely tells the
whole story of what a convolutional neural network (CNN) learned. Using
COVID-19 chest X-rays, we present a method for interpreting what a CNN has
learned by utilizing Generative Adversarial Networks (GANs). Our GAN framework
disentangles lung structure from COVID-19 features. Using this GAN, we can
visualize the transition of a pair of COVID negative lungs in a chest
radiograph to a COVID positive pair by interpolating in the latent space of the
GAN, which provides fine-grained visualization of how the CNN responds to
varying features within the lungs.
- Abstract(参考訳): 人工知能、特にディープニューラルネットワークにおける説明可能性の欠如は、実際にモデルを実装する上でのボトルネックである。
Grad-CAM(Grad-Headed Class Activation Mapping)のような一般的なテクニックは、画像内の健全な特徴の粗いマップを提供し、畳み込みニューラルネットワーク(CNN)が学んだことの全体を伝えることはめったにない。
新型コロナウイルスの胸部X線を用いて,GAN(Generative Adversarial Networks)を用いてCNNが学んだことを解釈する手法を提案する。
我々のganフレームワークは、covid-19の特徴から肺構造を分離する。
このGANを用いて、GANの潜伏空間に補間することにより、胸部X線写真中の一対の陰性肺からCOVID陽性肺への移行を可視化し、CNNが肺内の様々な特徴にどのように反応するかを詳細に可視化する。
関連論文リスト
- U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Topology-aware Convolutional Neural Network for Efficient Skeleton-based
Action Recognition [15.93566875893684]
本稿では,Topology-Aware CNN (Ta-CNN) という純粋CNNアーキテクチャを提案する。
我々は,マップ-アットエンド-グループ-マップ操作の組み合わせである,新しいクロスチャネル機能拡張モジュールを開発した。
特に,マップ-アットエンド-グループ-マップ操作の組み合わせである,新しいクロスチャネル機能拡張モジュールを開発した。
論文 参考訳(メタデータ) (2021-12-08T09:02:50Z) - Automated airway segmentation by learning graphical structure [0.76146285961466]
我々は,既存の畳み込みニューラルネットワーク(CNN)とグラフニューラルネットワーク(GNN)に基づく気道セグメンテーションの高度な手法を提唱した。
提案モデルにより,CNN法とGNN法を併用した場合,胸部CTスキャンの気管支をほとんどの症例で検出できることが示唆された。
論文 参考訳(メタデータ) (2021-09-30T01:37:31Z) - Convolutional Neural Networks Demystified: A Matched Filtering
Perspective Based Tutorial [7.826806223782053]
畳み込みニューラルネットワーク(CNN)は、大量の信号や画像を分析するためのデファクト標準である。
我々は、最初の原則と一致するフィルタリングの観点から、それらの操作を再考する。
このチュートリアルが、深層ニューラルネットワークの理解とさらなる発展に新たな光と物理的直感をもたらすことを願っています。
論文 参考訳(メタデータ) (2021-08-26T09:07:49Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - A Deep Convolutional Neural Network for COVID-19 Detection Using Chest
X-Rays [2.2843885788439797]
我々は,Dense Convolutional Networksに基づく画像分類器を提案し,胸部X線像を新型コロナウイルス,肺炎,正常の3つのラベルで分類する移行学習を行った。
テストデータセットで100%のテスト精度に到達することができました。
論文 参考訳(メタデータ) (2020-04-30T13:20:42Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。